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This paper is a brief discussion of cluster analysis in multivariate
data. The scope of the paper ranges from the analysis of variables through
the analysis of objects observed on those variables. In the interest of
brevity, only passing mention is made of many of the topics.

Before digital computers were widely available, many of the analytic
tools described here could be used only on small sets of data and others
were not available at all. The BC TRY System is an implementation of these
tools in a system of computer programs. The programs are described in
connection with the various cluster analysis procedures discussed here.

Figure 1 is a schematic presentation of the major stages of cluster
analysis. Many details and specialized techniques of cluster analysis are
not indicated in the figure. For example, factor analysis can be substi-
tuted for collinearity cluster analysis in certain circumstances. Also,
the analytic processes can be applied to a number of sets of data and the
results of the various separate analyses can be compared using other
techniques of cluster analysis. The reader is referred to other literature
(see Tryon, R. C. and Bailey, D. E., CLUSTER ANALYSIS, McGraw-Hill, 1970)
for more discussion and additional references.

The data amenable to cluster analysis are those of multivariate experi-
ments in which a number of different objects (subjects, respondents, etc.)
are each assessed (observed, measured, counted, etc.) on a number of
different variables. The objects may be selected from an undifferentiated
population or they may be samples from several subpopulations. The
variables generally are restricted to numerical representations of ordinal
(or dichotomous) characteristics of the objects with certain formal prop-
erties (see below).

There are four goals or sub-objectives in cluster analysis of variables:
1) condensation of the variables into basic dimensions that capture all of
the general covariation among the variables, 2) selection of homogeneous
subsets of variables that are observable representations of the basic
dimensions, 3) description of the statistical properties of the dimensions
and clusters, and 4) geometric (graphical) description of the cluster
structure of the data. Accomplishment of these objectives in the BC TRY
System is called V-analysis.

The objectives of multivariate analysis, as usually stated, are
centered on the observed variables. The point of view of this paper is
that variable analysis, V-analysis, is only a preliminary stage. In much
multivariate analysis work, specific individual differences among objects
are of primary interest. These are represented only generally in V-analysis.
However, cluster analysis of objects, called O-analysis in the BC TRY System,
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provides specific information about individual differences.

Before O-analysis can be undertaken, the objects must be described in
terms of the basic dimensions ngeloped in the V-analysis of the data.
Since the dimensions are not measured directly they must be estimated. The
form of this estimation process is a linear composite of the observed
variables, weighting the observed variables as a function of the dimensional
structure of the V-analysis. The results are called factor or cluster
scores, one score for each object on each dimension or cluster.

Once a score has been estimated for an object on each of the dimensions
or clusters from V-analysis an object can be represented as a point in score
space or by the graph of a score profile. Two objects that have the same
score profiles are located at the same point in score space. Also, two
objects having the same "pattern" of scores but different score magnitudes
(i.e., elevations) are collinear in score space. Because of these and other
properties there are a variety of ways to define object clusters. There
are two broad classes of object clustering procedures: 1) proximity clust-
ering, which selects object clusters on the basis of small distances between
objects in score space (total pattern similarity in the score profiles); and
2) collinearity clustering, which selects object clusters on the basis of
proportionality of patterns in the score profiles, not directly depending
on profile elevation. The results of an object cluster analysis are simple
groupings of the objects, called O-types in the BC TRY System. The clusters
have several statistical characteristics in terms of the cluster scores
from which the O-analysis is derived.

When the object clusters are treated as single points (mean scores) in
the score space, the V-analysis concepts apply to them. Their relationships
can be described statistically just as the relationships of variables and
clusters in V-analysis can be described. However, treating each object
cluster as a sub-sample leads to an analysis of cluster scores similar to
the analysis of variance, comparing the within object-cluster variance with
the overall variance of the cluster scores. These score homogeneities
[L - (within/total) ], can be averaged across the score dimensions to sum-
marize the uniformity of score profiles for am object cluster. Also, the
weighted average of the homogeneities for a cluster score dimension, aver-
aging across all object clusters, indicates the generalized coefficient of
regression of the cluster scores on the object clusters, the coefficient
of curvilinear correlation, eta.

In multivariate studies objects frequently are observed on two kinds
of variables, the several independent variables on which V-analysis is
based, and one or more dependent variables serving as target variables or
criterion variables in multivariate prediction studies. Multiple linear
regression techniques can be shown to be less efficient in prediction,
when prediction is good, than a variant of prediction known in the BC TRY
System as O-type prediction. Where the dependent variable scores within
object clusters are homogeneous, knowledge of which cluster an object
matches in cluster score profile immediately provides knowledge about the
dependent variable for the object. The best estimate of the dependent
variable value for a newly observed object is the mean score on the
dependent variable for the object cluster that the new object most closely
resembles, i.e., whose cluster score profile is most similar.



The Variables

In selecting variables for a multivariate study several considerations
are important. The pertinancy of the variables is the basis for success
or failure of a study. If the variables observed are not directly or
indirectly involved in a phenomenon, the results of the V-analysis or the
O-analysis of the data will not have a bearing on the phenomenon. The
happy situation is one in which the variables producing the phenomenon are
directly observable or measureable. However, when they are not directly
observable, the researcher is required to obtain indirect measurements of
the variables. These indirect measures become the variables in V-analysis.
If the choice of measurement procedures is appropriate, the dimensions
from V-analysis of the measurements will be more nearly directly related to
the unobservable variables and the researcher has a means of describing
their structure. Also, in such fortunate circumstances, the results of an
O-analysis provide a population segmentation that is a truer representation
of object types in the actual phenomenal world than if the variables observed
were not pertinent to the target phenomenon.

Selecting variables is perhaps the most difficult part of multivariate
research. If the researcher is able to obtain direct measures, there is no
problem. However, the researcher must be able to define the variables in
which he would be interested if he were able to measure them directly.

Once the domains of variation are defined, the researcher develops ad hoc
indirect measures of the variables, which in turn become the observed
variables. Great ingenuity often is required to be able to devise ad hoc
measures that approximate the target variables. Multivariate studies often
are performed on data gathered without much thought about the relevant
domains of variation. Such studies often produce systematic results that
reflect some covert model of the phenomenon in the mind of the person who
devised the measurement procedures. However, a systematic approach provides
more interpretable and useful results in both V-analysis and O-analysis.

It is important, where indirect measurement is necessary, to have
multiple measurements of each of thé target variables. Because the measure-
ments are surely mixtures of numerous sources of variation, including the
target variable, the best way to obtain a more pure estimate of the target
variable is to devise numerous measurement procedures having only the target
variable in common. Even though the target variable is not very well
measured by any of several indirect measures, the composite of the indirect
measures will be a better approximation, providing that the measures are not
systematically correlated with other sources of variation.

The variables in a multivariate study must be considered to be a sample
from a population of variables. It is important to have a balanced represen-
tation of the various domains of variation so that each of the domains has
a reasonable chance of playing the role in the analysis that it does in the
actual phenomenon. If one domain is copiously represented in a study, the
importance of that domain as a source of general variation in the study may
be more impressive than the domains less well represented in the study. At
the other extreme, if a domain of variation is represented by a single
variable, and both the domain and variable are independent of other domains
and variables in the study, the domain will not appear to be a part of the
basic dimensional structure of the phenomenon.
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Certain measurement problems are important in any discussion of multi-
variate analysis. Although correlations can be calculated on any numerical
multiyariate data, the meaning of the correlations (and subsequent analysis)
depends on the meaningfulness of the numerical data in relation to the
variables they are intended to represent. An analysis of data may be
performed without assurances that the results of the analysis can be inter-
preted reasonably. When the data are direct measurements there is of course
no problem. However, when indirect measurement is required, the data
obtained should have certain basic characteristics. The ordering of subjects
in the data must be the same as the ordering of objects in the actual proper-
ties the ddata represent. Stronger interpretations and statements of
differences in magnitude can be made when the measurements preserve prop-
ortionality of differences in the properties measured, i.e. where two equal
differences in measurement at different places on the scale of measurement
represent two equal differences in the properties measured. The emphasis
in multivariate analysis, particularly in V-analysis, is on correlation
rather than on variance. As such, the variables dealt with are standardized
variables with arbitrary origin (mean) and unit (variance) of measurement.
Methods are available to work with covariances and variances directly but
they are of no particular advantage unless the measurements have a natural
origin and unit of measurement that are important to preserve in the
analysis. In O-analysis it is perhaps of greater interest to retain natural
origins and units of measurement but the general practice is to use standar-
dized values with arbitrary means and variances.

Qualitative data are at times difficult to deal with, particularly if
there is no clear ordering of the qualities as a function of the variable
that the qualitative observations represent. If the qualitative distinc-
tions constitute an ordering with respect to the phenomenon being studied,
then one or another scaling technique can be used to transform the qualit-
ative data into numerical data. Also, if the qualitative distinction is
binary, the substitution of any numerical code for the two categories is
usually satisfactory.

Where missing data are common in a study, the correlations forming
the basis of V~analysis are based on a variety of sample sizes and a
variety of different samples. This variation makes the coefficients of
correlation non-comparable and any analysis based on the matrix is of
questionable value. 1In general, the more missing data, the more question-
able the results of analysis. Also, with large amounts of missing data it
becomes impossible to score objects on the dimensions of V-analysis, and
O-analysis becomes tenuous.

Where the distributions of the variables are highly skewed (i.e.,
non-symmetric) it is difficult to make clear interpretations of the results
of V-analysis, and O-analysis can often have pathological properties. For
dichotomous variables the skewness is represented in a disproportionate
number of objects on one side of the dichotomy -- producing artifactual
variation in the correlation matrix as a function of the skew.

Each of the variables included in V-analysis is assumed to be a
separate variable, having no functional or mechanical relationship with the
other variables. A common error made in multivariate analysis is to include
a total score variable as well as the sub-scores from the total. The
correlation matrix for such a set of variables causes problems in the
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methods used to determine the basic dimensions of the data. Inclusion in
V-analysis of variables that are based on other variables in the analysis
should be avoided. Special techniques in the BC TRY System permit an inves-
tigator to hold aside such variables in an initial V-analysis and later (in
the same computer run) to integrate the dependent variables back into the
V-analysis.

The Objects

The term "object" is used in the BC TRY System rather than subject,
respondent, etc. because of the generality of the term and the diversity
of applications of the System. The one restriction on defining an object
is that it be a separable and distinct unit for which the variables in the
study can be assessed. The value of a measurement obtained for one object
may not be determined by another object in a direct overlapping way, (i.e.,
independence of observations is assumed). For example, a study should not
include as separate objects both census tracts and voting precincts if
they share common boundaries within which the same subpopulation is
responsible for generating the values of the variables. Another example
of non-distinct and overlapping objects is the situation where a group
average on a variable and the scores for the individual members of the
group are included in a sample, as distinct objects. Objects, within this
general rule, can be any sort of thing . Some of the objects that have
been involved in applications of the BC TRY System are persons, census
tracts, voting precincts, state delegations to the U. S. Senate, samples
of earth from far-flung corners of the world, mosquitos, elm trees, sites
in glacial valleys, trials in a learning sequence, jobs in an employment
service, etc. Repeated measures on a single subject, known as ipsative
measures, are quite legitimate where the objects of interest are the
occasions of observation and different subjects are not mixed in calculating
the correlations for V-analysis. That is, in an ipsative study the V-
analysis is done within an individual subject.

In order for the results of an analysis of data to be pertinent to
the population in which the phenomenon being studied is important, the
sample of objects must carefully be chosen to represent that population.
Representativeness of samples of objects for a target population is as
important as representativeness of the sources of variations in the
variables included in a study. Often, the various strategies of random
sampling, stratified sampling, etc., are used to assure the proper consti-
tution of the sample.

A good rule of thumb in selecting sample size is to have at least twice
as many objects in the sample as there are variables in the study. When
considerations of representativeness dictate large numbers of subsamples,
the overall minimal sample size may be larger. Because of the descriptive
nature of multivariate analysis, we are concerned about the adequacy of
the statistics as estimates. The larger the sample size, the more adequate
the statistics are as estimates of population parameters. Also, certain
methods of profile analysis in O-analysis require relatively large samples.

V-analysis

There are many different procedures used in multivariate analysis of
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variables. However, there are four general goals of V-analysis involved:
1) separation of the observed variables into basic dimensions, 2) selec-
tion of clusters of variables, i.e., segmentation of the set of variables
into clusters of homogeneous measures of the basic dimensions, 3) calcul-
ation of the statistical properties of clusters, and 4) display of the
geometric properties of the basic dimensions, clusters, and the observed
variables.

Dimensional analysis. The reduction of a set of variables into a set
of independent dimensions is widely known in the social and behavioral
sciences as "factor analysis." 1In the more mathematically sophisticated
disciplines, procedures similar to factor analysis are referred to by such
names as ''eigen vector" problems. Regardless of the differences in detail
and nomenclature, the procedures are all designed to define a set of
dimensions forming a basic variable space in which each of the observed
variables is represented as a point (or vector). When a variable is repre-
sented as a row and column in a correlation matrix, the only information
retained about the variable is contained in its correlations with the other
variables. Thus, the end product of a dimensional analysis based on the
correlation matrix is a set of basic dimensions within which are preserved
the patterns of intercorrelations of each variable with all of the other
variables. The variables themselves are not represented, only the portions
of the variables having mutually shared intercorrelations are represented.

There are numerous techniques for the calculation of the basic dimen-
sions from a correlation matrix, of which we distinguish two general classes
in this paper. The first class is a form of solution of simultaneous
equations in which all variables and all basic dimensions are simultaneously
involved. This type of technique is generally based on a mathematical model
for optimization of certain properties, usually a minimum variance (least
squares, etc.) criterion. The specific criteria of optimization vary in
the different methods. The result of the process is, however, always an
expression of the observed variables as a set of coordinate values on a
set of independent (orthogonal) basic dimensions. The basic dimensions
are themselves derivative from the intercorrelations of the observed
variables in such a way that the coordinate values of an observed variable
with the basic dimensions are correlations of the observed variables (taken
separately) and a linear composite of all of the observed variables. The
primary points of the distinction of these methods and the methods described
next are the simultaneous involvement of all observed variables and the
optimization criteria one chooses to satisfy in the analysis. This class
of techniques is usually called factor analysis.

The second class of calculational techniques to find basic dimensions
are those of successive selection of subsets of relatively homogeneous
variables in order successively to define the dimensions. The techniques
vary within calculational procedures and in the means of identifying the
subsets of variables. The technique of key-cluster analysis of the BC TRY
System is to select the most general single variable in the entire set of
variables and form a cluster about that "pivot'" variable by selecting
a subset of mutually collinear variables that are collinear with the pivot
variable. After each cluster is discovered, the basic dimension corresponding
to the cluster is defined as a linear composite (with equal weights) of the
variables in the cluster. In this form of cluster analysis, as in the first
class of dimensional analysis methods, it is desirable that the basic
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dimensions be independent. This is insured by the "extraction'" of the
successive dimensions as they are calculated from the respective clusters.
Each successive cluster is based on the intercorrelations of the variables
corrected (reduced) in such a way that previous cluster defined dimensions
are not represented in the correlation matrix. It may happen that the
clusters in the data are not independent, even though the calculation
techniques force the basic dimensions to be independent. The orthogonality
of the basic dimensions is an artifact of the techniques used and is not a
necessary feature of actual data.

The optimization criteria in cluster analysis are not as simple as the
optimization criteria of the least squares or minimum variance. Also, the
criteria generally are not as clearly satisfied by the techniques used to
find basic sets of dimensions by cluster analysis. The optimization criteria
most desirable are: a minimum number of clusters (and corresponding basic
dimensions) to account for the intercorrelations among the observed variables,
which clusters are most nearly independent among all such minimal sets.

There is no clear-cut mathematical solution to the cluster selection problem
that satisfies these criteria. However, the method of key-cluster analysis,
or collinearity cluster analysis, in the BC TRY System employs reasonable ad
hoc techniques that have appeared to be satisfactory in numerous applications.
The method of key~-cluster analysis is described in general terms in the
following section,

The results of a factor analysis are at times difficult to interpret.
One reason for this difficulty is that the optimization criteria utilized
tend to equalize the projections of the variables on the basic dimensioms.
In order to more closely associate certain of the observed variables with
basic dimensions, the basic dimensions are "relocated" by a transformation
of the basis dimensions, a "rotation" of the axes of the basis space. The
relationships among the variables are not modified, and the relationships
among the basis dimensions are not modified, but the relationships between
the basis dimensions and the observed variables are modified. The specific
form of the transformation varies with the rotational mode. This procedure
is not needed in cluster analysis because the basic dimensions are defined
by clusters of observed variables in the first place. This is one of the
advantages of cluster analysis -- attention from the first is centered on
homogeneous subsets of variables and not on hard-to-define composites of
all the variables for all dimensions.

Cluster selection. A variety of techniques for the selection of
clusters have been proposed. In this paper, the problem is simplified by
restricting our attention to a single type of data. We assume that the
data are representable in the form of an Euclidean vector space with unit
radius (the basic assumption of all factor analysis). If the data are in
the form of a correlation matrix (or if a correlation matrix can be calcul-
ated reasonably from the data), vector projections, etc., the data satisfy
this requirement. Within this restriction, there are two types of clusters:
collinearity clusters and proximity clusters. In collinearity clusters the
variables of a cluster are all relatively homogeneous with regard to their
location in the vector space in terms of direction of the vectors, relative
to the origin of the vector space. That is, the vectors of collinearity
clusters form a tight bundle of vectors with the ideal cluster being a set
of vectors lying precisely on a single line and varying only in length. 1In
proximity clusters the vector length and vector collinearity are not directly
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relevant. The only relevant condition is that of '"nearness" or proximity
defined by small Euclidean distances between the vector points (variables).
When the vector lengths are close to unity in a proximity cluster it follows
that the variables are also relatively collinear. However, when vector
lengths are very short, i.e., near the origin, the vectors are all separated
by small distances but may be at right angles to each other.

The specific technology of selecting clusters depends on certain features
of the data and on the desired results. In V-analysis the minimal number of
most independent clusters are selected. In key-cluster analysis, clusters
are selected in a sequence, each cluster-defined dimension being "removed"
from the data as the cluster is selected: the selection of a given cluster
is based on correlations after the influence of all previous clusters has
been removed. Two steps are involved: selection of a key or pivot variable,
and selection of the remainder of the variables for the cluster. It is
desirable to select clusters that have large amounts of general variance and
that are composed of variables that are mutually collinear as well as
collinear with the pivot variable. In key-cluster analysis, the pivot
variable selection procedure insures that the successive clusters are as
general as pessible given the condition of the correlation matrix. Once
the pivot variable has been selected a second variable is added; that var-
iable most collinear with the pivot variable. Successively added variables
are those with the highest mean collinearity with the previously selected
variables. Overall cluster homogeneity is insured by setting lower limits
on the mean collinearity acceptable for a cluster definer. The successive
reduction of the values in the correlation matrix as each cluster is defined
ensures that the dimensions are independent, although the clusters themselves
might not be mutually independent.

Proximity cluster analysis techniques reduce to selecting clusters
having small intra-cluster distances. One way to do this is to begin initi-
ally with a factor analysis of the correlation matrix to reduce the variables
to points in a basic vector space. The distances between variables can then
be calculated and a cluster analysis performed from the distances. Techniques
that have been developed for this type of analysis depend on selecting a
given variable as the first variable of a cluster, adding as the second
variable that variable with the smallest distance from the first, etc. In
some techniques, distances are averaged as variables are added and in others
only the latest variable added is important in seeking the next variable to
be added. 1In the BC TRY System, proximity cluster analysis is performed by
a pattern-recognition technique. If two variables are in the same general
region of the vector space, they have highly similar patterns of projections
on the arbitrary basis dimensions. Also, if the vector space is subdivided
into segments depending on relative values on all of the basis dimensions,
any two variables falling into one segment will have similar patterns of
projections. For example, two variables with the pattern of projections
high, high, low, and middle on the four basic dimensions will be located
in about the same place in the space, depending on the width of the categor-
ies high, low, and middle. Once the categories are defined, a pattern for
each variable is easily established and proximity clustering is simply a
sorting of the patterns to discover collections of variables with the same
patterns. More details on this method are given below as part of the
discussion of cluster selection in O-analysis.

Statistical properties of clusters. In V-analysis one of the primary
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goals is to express the variables as linear composites of a set of basis
dimensions. In factor analysis and in key-cluster analysis of the BC TRY
System the dimensions are independent (orthogonal). However, in cluster
analysis, the development of the basis dimensions is accompanied by the
identification of clusters of variables. The clusters have a substantive
existence independent of the orthogonal dimensions. Generally, the clusters
are not orthogonal. Also, clusters have a number of interesting statistical
properties.

The degree to which each cluster, separately, accounts for the correla-
tion matrix can be calculated. Such measures of saliency indicate the
relative importance of the clusters in determining individual differences
in the sample. Two such measures are routinely calculated in the Cluster
Structure Analysis (CSA) program of the BC TRY System: one based on the
actual original correlations accounted for by each cluster, and the other
based on a measure of the generality (the communality) of the variables
accounted for by each cluster.

General psychometric techniques lead to the definition of the reliability
of a cluster composite. Low reliability implies instability of the varia-
tion of individual differences in the observed variables. One does not wish
to make general interpretations of hypothetical domains of variation that
are not reliably measured. Nor does one wish to base an O-analysis on scores
for clusters that are not reliable. CSA calculates the reliabilities of
each cluster. In addition, CSA seeks out the most likely additions of
variables to each cluster and recalculates the reliabilities under the assump-
tion that each of these additional variables is added singly to the cluster
and then, sequentially in order of the magnitude of their individual effects
on reliability.

Because the clusters themselves are not usually independent, the inter-
correlations of clusters are of interest. These correlations are calculated
in two ways in the BC TRY component CSA, first for the simplest estimate of
the cluster (the simple composite) of the cluster variables (the cluster
score), and second for the composites corrected for their unreliability.
Hypothetical clusters, perfectly reliable and collinear with the centroids
of the observed clusters, are called "domains" in the BC TRY System. Corr-
elations of the cluster composites and the estimated domains indicate the
validity with which cluster composites estimate the general domains. The
correlations of each of the individual variables in a study with the dimen-
sions defined by these domains is the analog to the matrix of factor
coefficients in a factor or cluster analysis, excepting that they are not
independent.

Geometric properties of clusters. The basic assumptions in multivariate
analysis imply that the data can be displayed geometrically. The correla-
tions of the variables with the basis dimensions provide all that is necessary
to graph the geometric properties of the vector space. The BC TRY System
program SPAN, for SPherical ANalysis, plots the variables in subsets of
three dimensions at a time from the full collection of basis dimensioms.

The plot is two-dimensional. However, because of certain properties of the
projection of a three-dimensional space into a two-dimensional plane, the
full three-dimensional picture can be '"visualized" from this plot with a
little practice. In this way, the actual spatial relationships of variables
in clusters and between clusters become intuitively understandable.
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Describing Individual Objects in Terms of Clusters

Having identified factors or clusters, one wishes to describe in terms
of the factors or clusters each of the individual objects observed in the
sample. If we have an object at hand, what would it score on the clusters
or factors? The solution to this problem in factor analysis (factor
estimation) traditionally involves solution of systems of simultaneous
linear equations. The simpler procedures of cluster scoring produce results
correlated nearly 1.0 with the factor estimation results whenever the
clusters are reliable and highly collinear. A cluster score is simply the
sum of standard scores of the object on the variables in the cluster. For
convenience, the composite is usually re-scaled to some conventional mean
and standard deviation (the same practice is used in factor estimation). If
we are dealing with subjects in the sample from which the correlation matrix
was obtained, the basic data are already available in the computer at the
end of the process of V-analysis. If a new object is to be scored on the
clusters from a previous study, all that is needed is the object's scores on
the cluster variables, the mean and standard deviation from the sample used
in the cluster analysis, the standard deviation of the sum of standard scores
in the cluster, and the desired mean and standard deviation for the cluster
scores. Everything is provided by the calculations in the original analysis,
excepting the new object's scores.

Cluster Analysis of Objects

The primary motivation for V-analysis is the development of basic
dimensions with which to describe the general sources of individual differ-
ences in the objects one observes. The results of V-analysis may suggest
the meaning of the basic dimensions. However, the utility of the dimensions
of V-analysis, or their pertinence to fundamental phenomena, cannot be
ascertained readily from the results of V-analysis alone. Rather, the
manner in which the objects are segregated into clusters, and the manner in
which these object clusters relate to other (criterion or dependent ) varia-
bles, determines the significance of the results of the V-analysis. The
evaluation of the utility of the cluster scores for O-analysis can be made
partially from the results of the cluster analysis of objects. However,
the substantive significance of V-analysis or O-analysis can be determined
only on evidence that the O-analysis leads to an otherwise unachievable
undarstanding of the individual differences of objects on some criterion or
dependent variable. The techniques for making such an evaluation are des-
cribed below as "Typological Prediction".

Cluster selection in O-analysis. The two types of O-analysis parallel
the two types of V-analysis: proximity clustering, and collinearity
clustering. In proximity clustering the goal is to find groups of objects
having small inter-object distances, i.e., objects in the same neighborhood
of the multivariate space defined by the cluster or factor scores. Numerous
techniques exist for scanning a matrix of distances in order to determine
the proximity clusters. One technique is to define an initial cluster as
the two objects in the entire sample having the smallest distance. The
third object added to it is that object with the smallest distance from
either one of the first two objects or the average of the first two objects.
Objects are successively added to the cluster until the distance of the next
candidate for inclusion exceeds some criterion value. These methods vary
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in terms of the objects compared on each successive addition, the entire
set of previously selected objects or the most recently added object, etc.

A pattern-recognition approach to proximity clustering is implemented
in the BC TRY System. An initial set of neighborhoods or sectors of the
score space are established under control of the user of the program OTYPE.
The observed subjects are sorted into these neighborhoods, by matching the
pattern of cluster scores defining the neighborhood with the pattern of
scores of the observed subjects. In the OTYPE program only those neighbor-
hoods with one or more objects are ever actually defined. Those sectors
(neighborhoods) with multiple objects in them are retained and the objects
in those sectors are called core object clusters. The centroid for each
core object cluster is calculated and the clustering of the objects is
discarded. A new clustering of objects is obtained by defining a cluster
for each of the core centroids. The distances between an object and each
centroid are calculated. The smallest distance determines the new assignment.
Each object is assigned to the core object centroid from which it has the
smallest distance even though the objects themselves are shifted from one
core object cluster to another in the process. Two clusters defined in this
way that are separated by a distance smaller than a user-specified criterion
are merged (condensed) into a single cluster, and the process is continued
with the reduced number of object core clusters. A core cluster is discarded
if it is robbed of all its members by their reassignment to other core
clusters. When the memberships of the object clusters do not change in any
reassignment cycle, the process is said to have converged, and the final
clusters are called O-types in the BC TRY System. Because of the built-in
requirement that objects be assigned to clusters from which they have small-
est distances, and a rejection of objects when the smallest distances are
large, the final clusters are well-defined proximity clusters, residing in
neighborhoods with boundary limits fixed by parameters set by the user of
the program.

In proximity clustering the number of objects involved must be relatively
large in order to use the pattern identification procedures for the OTYPE
program, particularly when the number of basic dimensions is large. The
number of sectors is a geometric function of the number of dimensions. Conse-
quently, for a large number of dimensions the number of sectors is large.

For a given number of sectors, the probability that two or more objects will
be in the same sector is a direct function of the number of subjects -- the
more subjects the larger the probability that two or more subjects will fall
into a given sector. For small numbers of subjects and a large number of
dimensions, the OTYPE program sometimes fails, and a technique called EUCO
analysis in the BC TRY System is used. In EUCO analysis the pattern of
distances of a pair of objects compared with the entire remainder of the
sample is taken as an indication of neighborhood similarity. The distances
of all pairs of objects are intercorrelated and a standard key-cluster
analysis or factor analysis is performed, identifying clusters of objects
with similar patterns of distances in the distance matrix.

The second major type of O-analysis is collinearity cluster analysis.
In this type of analysis, the distance between objects is less a matter of
concern than is the proportionality of score profiles without regard to the
elevation (overall magnitude) of the scores in the profiles. In the psycho-
metic literature this type of analysis is sometimes called Q-analysis. One
approach is simply to take the transpose of the original score matrix (rever-
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sing the role of variables and objects) suitably standardized, and perform
an ordinary V-analysis on the correlation matrix resulting from correlating
the columns of the transposed matrix. This technique includes all of the
specific variation in the scores that are used to determine the inter-
object correlations, a feature that is perhaps objectionable. On the other
hand, if the score matrix used is the cluster or factor score matrix instead
of the original scores, only the general sources of variation among the
subjects are retained and the analysis is free of influences of specific
sources of variation in the inter-object correlation matrix. A more inter-
esting approach is to treat the cluster or factor scores as vectors in score
space and to calculate the inter-object cosines directly rather than the
inter-object correlations. This approach is based on an assumption that the
objects are perfectly (no error variation) represented by the cluster scores.
The cosines are of course direct measures of the degree of collinearity of
two sets of scores, without respect to the score magnitudes. A cluster
analysis of this matrix of cosines by V-analysis techniques produces the
most independent set of object clusters. Other object clusters (falling
between or among the most independent set of clusters) can be detected by
inspecting a geometric representation of the objects by procedures like
those of the SPAN program of the BC TRY System.

Homogeneity analysis of O-types. Once a collection of object clusters
is identified, it is important to study the homogeneity of scores within the
object clusters. A score dimension does not differentiate the O-types if
the O-types are as heterogeneous as the sample of objects at large on a
score dimension. For proximity clusters, the scores of the objects in a
cluster should be approximately all the same value. Any variation from
object to object within proximity clusters should be random variation and
the inter-correlations between the cluster scores within the O-type should
be essentially zero. For collinearity clusters the scores for any two
objects, across all the basic dimensions, should be proportional. As a
consequence, the inter-correlations of the scores within a collinearity O-
type should all approach 1.0 if the clusters are well defined. The actual
values in a collinearity cluster on a given basic dimension may have a wide
range. Score dimensions defined by clusters for which the cluster relia-
bility is not satisfactory will tend to have lower degrees of cluster homo-
geneity than clusters with high reliability.

An additional homogeneity analysis concept is useful in proximity
clusters. Each of the basis dimensions influences the assortment of the
observed objects into the O-type clusters. However, the degree to which
the various dimensions are involved may vary. If the O-types are concep-
tualized as a set of categories in a generalized regression problem, and if
the cluster score dimension is taken as the dependent variable in the regres-
sion, then the total variance of the cluster score can be partitioned into
a part associated with variation within object clusters and a part associated
with differences in mean values of object clusters. The ratio of the
variance component associated with the differences in mean values to the
total variance is the correlation ratio, eta. Alternatively, this corre-
lation ratio can be defined in terms of the weighted sum of the homogeneities
of the O-type clusters. The statistic eta is an expression of the general,
non-linear, regression of the cluster score dimension on the O-type class-
ification. If the value of eta is near 1.0, and if one knows the O-type to
which an object belongs, the object's score on the dimension can be stated
with a high degree of precision simply by stating the mean value of scores
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within the O-type on that dimension. Conversely, the mean homogeneity for
each O-type, averaging across all the basis score dimensions, indicates the
average degree that membership in an O-type specifies ranges of scores over
all cluster score dimensions.

Displaying O-types in vector spaces. It is useful to map the O-types
into the vector space of scores. In order to do this, several idealized
objects are "invented" to represent the O-types and the score dimensions.

The idealized objects representing the O-types are invented simply by
finding the mean score of the objects in each of the O-types. The mean
score profile for an O-type is treated as an object. In order to represent
a score dimension several idealized score patterns are created, such that
they vary only on that score dimension and have the mean value on all the
other dimensions. Thus, we invent objects each having mean values on the
second, third, etc., dimensions and systematically varying on the first
dimension, perhaps in steps of one-half standard deviations. If there are
three dimensions with means of 50 and standard deviations of 10, some of
_the idealized objects representing the first dimension would be (35, 50, 50),
(40, 50, 50), (45, 50, 50), (55, 50, 50), (60, 50, 50), and (65, 50, 50).
Each dimension is thus represented by a set of idealized objects. The

sets of idealized objects representing the dimensions and the O-types are
combined into a single "sample" of objects and an O-analysis is performed
using the methods of the BC TRY program EUCO. This program converts the
inter-object distance matrix into a correlation matrix and a key-cluster
analysis is performed. Fcllowing the cluster analysis, the gecmetric struc-
ture of the O-types is displayed by the print-out of the program SPAN,
showing both the O-types as points and the idealized objects representing the
score dimensions as points (nicely lined up showing the location of the
dimensions in the O-type space). An interesting application of this technique
is to introduce into the analysis ideal profile types derived from theory.
For example, a theory of personality will perhaps specify profiles for crit-
ical personality types or a product field will have ideal customer types
specifiable as a profile of scores.

Hierarchical analysis. In many object analyses the number of object
clusters may be too large for the number of distinctions that one wants to
make in an application of the results of the analysis. Or, the specificity
of the aggregation into O-types may be too great. In these circumstances
one wishes to condense various O-types into combined groups. The conden-
sation most reasonable is that involving the most similar O-types. An
obvious definition of similarity in this context is the distance separating
the O-types in the score space. These distances are easily calculated from
the mean scores of the O-types. The number of O-types can be reduced by
combining the two O-types with the smallest separation (smallest distance).
The resultant, more general, O-type replaces the two O-types combined. This
process is repeated, combining the two O-types with the least separation,
until all of the O-types are finally pooled into one group composed of all
of the objects in O-types. The successive stages of reduction are hierar-
chical. The hierarchy can be described as a branching process like a
geneological tree. At the top are the specific O-types, at the bottom is
the entire set of objects, and in the middle are intermediate stages of the
combination of O-types. Inspection of the mean score profiles of the various
combinations of O-types developed in the hierarchy can guide the researcher
in selecting a point in the hierarchical condensation for a final set of
C-types. A graph of the hierarchical tree is easily developed from the
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distances between the O-types as they are condensed in the hierarchy.

Typological Prediction

Regression techniques in prediction are well known. One or more depen-
dent variables are of importance in an application but difficult or impossible
to observe in the actual application situation. One or more other variables
that are easily observable prior to actually engaging in the application
are correlated with the dependent variables. A preliminary, or standardi-
zation study is performed in order to determine the regression of the
dependent variable on the independent variables. The regression equation
gives estimates of the dependent variable from knowledge of the independent
variables. Where there is a single independent variable the prediction is
termed "univariate." Where there are two or more independent variables the
techniques of multiple correlation and multiple regression are used, and
the prediction is "multivariate." In the social and behavioral sciences,
univariate prediction is considered reasonable if 25% of the variance of
the dependent variable can be predicted. In multivariate prediction the
prediction is generally better, on the order of 70% in successful appli-
cations. Both of these techniques are used in the BC TRY System to study
prediction from cluster scores. However, a third technique offers more
specificity and discriminative accuracy: O-type, or typological prediction.
If an object is identified by O-type membership the best estimate of its
score profile is the mean score profile for the objects in its O-type.
Expanding this to a dependent variable, the best estimate of the value that
an object has on a dependent variable is the mean value of the dependent
variable for the O-type in which the object is a member. Should an object,
not included in the standardization sample, have cluster scores matching the
mean scores of a given O-type, the best estimate of that object's dependent
variable is the mean value of the dependent variable in the given O-type.
This estimate is accurate insofar as the variability of the dependent
variable within the O-type is smaller than the variability in the object
population. There are several advantages to this method of prediction.
First, the homogeneity for certain of the O-types may approach 1.00, corres-
ponding to zero error of prediction for the objects with that O-type score
profile. Second, the O-types with less homogeneous scores on the dependent
variable are explicitly identified. Prediction for objects with those O-
type score profiles can be viewed with greater caution. The regression
model for prediction gives a mean accuracy of prediction based on the assump-
tion that the variances in the dependent variable are equally homogeneous
over the entire domain of the independent variables. In typological predic-
tion one takes advantage of greater homogeneity in certain segments of the
population and is alert to problems with smaller homogeneities in other
segments of the population. A third, but less critical, advantage is that
only the variables in clusters must be observed to make the prediction.
Goodness of fit of an object to the O-types is directly observable from
these cluster scores. The fourth advantage, and perhaps the most important,
is that no particular mathematical model is required for this type of pred-
iction. The prediction procedure is not based on a linear regression, a
quadratic, or any other simplistic form. Rather, the configuration of
cluster score patterns is directly the determiner of the prediction without
benefit of, or obfuscation by, a specific mathematical model.

The component 4CAST is a useful feature of the BC TRY System for testing
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the efficacy of prediction without resorting to questionable statistical
assumptions. 4CAST is a sampling program that develops the sampling distri-
bution of a variable for samples the size of the various O-types in an O-
analysis. For an O-type of a given size, the program draws random samples
repeatedly from the full sample and plots the distribution of mean values

and homogeneity values for the many samples, comparing the mean and homogeneity
on the observed O-type with the distribution resulting from the repeated
sampling. The relative frequency of means that are smaller, or larger, than
the observed O-type mean can be interpreted as the significance probability
of the departure of the O-type mean from the mean of the full sample. Thus,
an O-type with a score average approximately equal to the average in the full
sample, but with a significantly greater degree of homogeneity, might be as
important a finding as one with a mean significantly departing from the full
sample mean. The techniques used in 4CAST are modern Monte Carlo techniques,
making no assumptions regarding the "underlying" distribution of the score
dimensions.

The BC TRY System of Computer Programs

The BC TRY System of computer programs is designed to perform all of the
types of analyses discussed above, and a good many more. The modularity and
flexibility of the System makes innovative use of the multitudinous options
quite easy. The System has been used in a wide variety of substantive problems,
encompassing studies of attitudes, chemical engineering, genetics, hydrology,
zoology, glaciology, medicine, soil morphology, marketing, job specifications,
education, social structure, physical anthropology, economics, aptitudes, etc.

This section of this paper is a discussion of the basic design of the
System, the executive operation of the System, the data sharing facilities
of the System and the primary statistical programs of the System. The discus-
sion is not technical. Rather, this section is a general exposition of the
System without development of the technical computer aspects of the System.
Figure 2 is a schematic representation of the computer and operational struc-—
tures of the System.

Basic design characteristics. The BC TRY System was designed and imple-
mented with three primary criteria -- general utility in multivariate analysis
(both V-analysis and O-analysis), ease of use, and accuracy. These criteria
are satisfied in a number of ways, some of which are explicitly covered
here.

The System is modular. The basic building blocks of multivariate analy-
sis are incorporated into the System in independently callable segments. The
independence of the segments is limited only to the input requirements of
the various types of analyses. However, there are numerous paths for the
input of data for each segment of the System, matching the configuration of
almost any desired data analysis. Indeed, the data sharing capability of the
System is one of the unique elements of the System among computer program
packages. Input and output of data between stages of an analysis are accom-
plished easily, providing the user with a way of introducing new data at
intermediate stages and a way of outputting (cn punch cards) results of
intermediate calculations of an analysis. The modularity of the System is
reflected in the manner in which the various stages of analysis are initiated
and controlled. The basic building blocks of the System consist of primary
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Figure 2 Structure of the BC TRY System
of Computer Programs

COMPUTER ORGANIZATION
COMPUTER MEMORY USED BY BC TRY
RESIDENT BC TRY PROGRAM

TABLES OF COMPONENTS

DISK
STORAGE

BC TRY OVERLAY
PROGRAMS - COMPONENTS

r—ﬁﬁ

BC TRY DATA AREAS

|Bc TRY PROGRAM STORAGE

IST TABLES

| IST AND DST

FUNCTIONAL ORGANIZATION

TABLE OF RESIDENT BC TRY
COMPONENTS| PROGRAM

(EC CARDS }—7

B /' 2 > <G>
O ()




18

components that are executed by use of an executive control, EC, command or
"verb" of the System. These verbs play the role of identifying the primary
type of operation to be performed. The modifiers of the verbs are component
control, CC, commands, in the form of punched cards containing option control
parameters. The EC commands are of two sorts, data sharing commands and
commands that control statistical, analytical and logical problems. A run

of the BC TRY System consists of a sequence of EC commands (each on a
separate punch card), CC command cards, and data cards. There are 31 standard
EC commands in the System, most of which have a large number of modifiers in
the form of CC commands. For example, in V-analysis there are eight primary
executive control commands: CC5 for key-cluster analysis, DVP for determin-
ation of initial diagonal values in the correlation matrix, FALS for least
squares methods of factor analysis, GYRO for rotational methods, etc. 1In

the FALS EC command there are three primary modifiers, for the three methods
of least squares factoring available: principal axes, augmented factoring,
and canonical factor analysis. Each of the primary modifiers in FALS has

two separate sets of parameters that determine such things as how the dimen-
sionality of the solution is to be determined, and how convergence in factor
iteration is to be determined. The range of possible analyses involving FALS
is extensive when used in concert with other EC commands that provide a mani-
pulation of the basic data that FALS addresses in its calculation. For
example, different forms of factor analyses are given when the diagonal values
program DVP, executed before FALS, is used with different modifiers providing
various types of values. Repeated use of an EC command, preceded by various
other EC commands, can be used to provide methodological studies in data
analysis. A string of BC TRY EC and CC commands represents completely and
accurately a complex and highly individualized multivariate procedure.
Because of the richness of the EC and the CC command structure, and because
of the data sharing aspects of the System, the user virtually interacts with
his data analysis, exercising control over the detail and broad strategy of
the analysis.

The flexibility of analysis using the BC TRY System is illustrated in
the following example. Imagine data in which a general factor influences
the intercorrelation of all of the observed variables (say an instrument
factor, or a factor representing systematic context variation across the
observational procedures). We wish to "extract" this variation as a general
factor and then perform a cluster analysis on the resulting "corrected"
correlation matrix. The corrected correlation matrix is of interest in
itself and we want a card deck containing the matrix. The sequence of EC
commands that would be used are as follows:

START initializes the computer and data storage
facilities
DAP inputs the raw data, variable names, and object

names and provides simple descriptive statistics
for the raw data

DPRINT lists the data as they actually appear to the
programs
COR2 calculates the correlation matrix from the raw

data
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GIVE produces a card deck containing the status of
the analysis at this point

DVP provides diagonal values for the correlation
matrix (communalities)

FALS under modifiers used for this analysis, this
program calculates a single principal axis
factor (the first Eigen vector)

FAST calculates the correlation matrix orthogonal
to the first Eigen vector and replaces the
original correlation matrix with this reduced
matrix

GIST punches specified information; the corrected
correlation matrix in this example

DVP calculates new estimates of communality to be
used in the cluster analysis

CC5 performs a full key-cluster analysis

GIVE produces a card deck containing the status of
the analysis at this point, including data
necessary to re-start at a later time.

A simple cluster analysis of the correlation matrix, without the removal of
the first principal axis would be performed by the following sequence of EC
commands: START, DAP, DPRINT, COR2, GIVE, DVP, CC5. The GIVE command serves
to punch the status of the data in the analysis at the point the command is
used. The punch cards provided by GIVE can be read by using the command
TAKE, re-establishing the status of the analysis as it was when the GIVE was
used. Consequently, the following analysis picks up where the previous
analysis has just completed calculating the correlation matrix: START, TAKE,
DVP, CC5. Now, imagine that we wanted the first analysis described above,

but we wanted in addition to have a cluster analysis of the matrix before
the first principal axis is extracted, and that we did not want to have the
correlation matrix punched out: START, TAKE, DVP, CC5, FALS, FAST, DVP, CC5,
GIVE. To perform a varimax rotated principal axis analysis and a key-
cluster analysis, using the communality estimates provided by the full
principal axis analysis, the following sequence of EC commands would be used:
START, TAKE, DVP, FALS, CC5. The print-outs of the procedures appear in the
order of the use of the executive commands.

The System is truly eclectic in its selection of procedures implemented
as standard procedures and options within the EC commands. In addition, the
System contains a subsystem of 35 matrix and vector operators and special
control commands to manipulate the data sharing facilities of the BC TRY
System. With this special subsystem, any calculation that can be expressed
in terms of vector, matrix, scalar, and elemental algebraic operations can
be incorporated into the BC TRY System without additional programming or
modification of the System.
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Use of the System is streamlined in standard analyses by the use of
"default" options. In order to avoid requiring a user of the System to
punch the CC modifier parameters in routine and standard use of the System,
failure to specify parameters results in the substitution of the standard
(default) parameters. A few constants associated with a data set are always
needed, such as the number of variables, and the number of observatioms.
However, a standard deck of commands, modifiers, and data, has few specially
punched cards.

In using programs such as the BC TRY System, errors of certain kinds in
data decks, machine failures, control card errors, etc. will cause abber-
ations in an analysis. In the BC TRY System, most such abberations cause
automatic punching of the status of the analysis on cards for later re-start
of the analysis from the point just previous to the error point. This
feature also is callable directly by the EC command GIVE.

Thé DPRINT EC command causes a print-out of the actual data that are
input to the computer, in order to verify the correctness of the data as
they are actually entered into the analysis. Variable format facilities of
the System are easy to use, but the use of format statements is tricky at
times and the user must be able to verify that his format and his data are
actually in parallel before he can be sure that the analysis is performed on
data that he intended. Use of DPRINT provides this capability as a standard
feature.

The outputs of the component programs of the BC TRY System are labelled
and annotated for easy interpretation. Together with the full documentation
of use of the System, this output clarity makes the System easy to use. For
standard uses of the System, an Abridged User's Manual provides a brief and
concise guide. For the less ordinary uses, the full User's Manual provides
a great deal more documentation on the use and interpretation of output of
the System than is found in other packages of programs.

Meticulous care has been observed in the development of the System to
control the accuracy of computation. Extensive test cases have been run
with cross—checking and parallel hand calculation to insure accuracy of the
results.

Executive and sub-monitor operations. Modern computers are operated
under the control of a computer program called a monitor, an executive system,
or an operating system. These programs coordinate the various languages and
jobs executed by the computer, including assignment of auxiliary storage
(peripheral) devices to a user and recovery from failures in a user's program.
In the BC TRY System a central program called the General Executive Program
(GEP) plays the role of a sub-monitor under the operating system of the
computer. To the operating system of the computer GEP appears to be a
simple user's program. However, to the component programs in the BC TRY
System GEP serves the functions of an operating system. Only a few of the
functions that GEP performs are mentioned here. GEP has as its primary
function the selection of proper component programs from the System on
signal (punched on cards) from user. When the order of cards is not
appropriate, GEP generates messages to the user and performs certain recovery
tasks before relinquishing control to the computer operating system. Second,
GEP retains records of the data generated by the programs used in the sequence
of a computer run on BC TRY. Improper sequencing of programs in BC TRY can
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result in information not being available to a program, and GEP signals this
to the user and terminates the run with procedures making it possible for
the user to recover from the point of the error. The recovery procedures
that BC TRY initiates on discovery of a computer fault make it possible to
re-initiate a run at a later time without beginning all over again. This
and other supervisory functions of GEP makes for greater ease in use of the
System and in more error-free operation of the System. Also, the design of
GEP, although too technical for this discussion, makes the data sharing
features and the modularity of the System possible.

Data sharing in the BC TRY System. A very large number of sets of inter-
mediate statistics in the form of matrices, vectors and lists are generated
in the process of performing a cluster analysis. Among these are the corr-
elation matrix, the list of variable names, the list of object names, the
diagonal values, the means and standard deviations of variables, lists of
cluster memberships, the matrix of factor coefficients, the final residual
matrix, the cluster scores, lists of O-type memberships, mean scores of O-
types, etc. The intermediate data, as well as the original data, are needed
by various components of the System in their functions. Because of the
limited memory capacity of the computer it is not possible to store in
memory all of the initial data, the intermediate statistics and the component
programs of the System. Consequently, peripheral storage devices (magnetic
tape or disk) attached to the computer are utilized. Effective use of these
peripheral storage facilities is simple in programs smaller than the BC TRY
System. However, since runs with the System may involve assmany as a dozen
or more components, special provisions are made for communications between
components in order to share data on the peripheral devices of the computer.
Each vector, matrix, or list treated in this way is called a file. Each
file has a name and certain parameters indicating its size and format.

The principal element in the data sharing system is a table of file
names, file parameters, and the locations of the files on the peripheral
computer devices. The table is maintained in memory by GEP and hence
is available for each of the successively called component programs. As a
component program needs data that are stored on the peripheral device, it
interrogates the table to determine the location and parameters of the data
file. As a component program generates data that are to be stored on the
peripheral device, it makes entries in the file table and writes the data on
the peripheral device. Since there is a record in the table of the infor-
mation on the peripheral device, no direct communication between components
is necessary but the components are able to share data throughout the System.

In addition to access tc the data files by the statistical analysis com-
ponent programs of the BC TRY System, a number of component programs are
included in the System to provide the user with direct and convenient access
to the data files. Original data from card decks are stored on the Data
Storage Tape, DST, (which physically may be a portion of a magnetic disk) by
the DAta Processor component DAP2. The intermediate and final results of the
execution of component programs of the System result in the storage of data
files on the Intermediate Storage Tape, IST, (which physically may be a
portion of a magnetic disk). The component GIST (for Generate Intermediate
Storage Tape), called by a EC card, is designed to permit a user to enter
data files into the IST or to have data files from the IST punched onto cards
(in keypunch form). The CC commands and data cards following the GIST EC
command determine which files are affected. Thus, a data file that ordinarily
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is generated by a component program of BC TRY may be deposited on the IST by
a user without executing the component program. For example, if a researcher
has a correlation matrix but not the raw data he may enter the matrix onto
the IST for analysis by the cluster or factor analysis programs. Also, if
the researcher wants the matrix of factor coefficients punched on cards, GIST
can be used to obtain the desired cards.

The component SMIS (Symbolic Matrix Interpretive System) also can read
cards, read files from IST, and write files on the IST. The general matrix
and vector calculation power of SMIS permits application of transformations
to data read from cards or from IST files and subsequent storage of the
transformed data on IST files accessable to other components in the System.
For example, there is no provision for using the squared multiple correlation
estimate of communalities in the diagonal values program of the System.
However, a simple sequence of CC commands for SMIS finds the squared multiple
correlations and stores them on the IST as the diagonal values file.

The entire contents of the IST can be punched out on cards (in compact
binary form) by the user of the System by using the EC command GIVE. All of
the files of the IST are thus preserved. This process is reversible by
using the EC command TAKE, which reads a card deck produced by the EC command
GIVE and restores the IST to the form that existed at the time the GIVE was
executed. Thus, in one run on the System, at a stage where the user wants
to be able to re-start the analysis in another run, a GIVE EC command would
be included in the control deck. At a later date, the user would include
the deck produced by the GIVE in his control and data deck, as the data for
a TAKE EC command.

Statistical, analytical and logical programs. This section presents a
brief description of the component programs of the BC TRY System that perform
statistical, analytical, and logical processing of data in a cluster or
factor analysis.

1) Data processor program, DAP. DAP prepares the data storage tape,
DST, from a deck of cards containing the raw score matrix. This file is then
used by other component programs that operate on the score matrix, such as
the correlation program. DAP permits the user to identify variables and
objects by names (if not specified, the program assigns appropriate names
such as VOOl, V002, etc.), to reorder the variables and to reflect the vari-
ables. It incorporates an extensive system of error checking, accomodates
missing data, and computes means and standard deviationms.

2) Comment, COMMENT. The user may wish to insert comments in the print-
out before or after execution of certain components. Unlimited numbers of
cards are read and immediately output by the COMMENT EC command.

3) Data verification, DPRINT. Data read by DAP onto the DST can be
verified by printing them immediately after DAP and then proof-reading after
the computer run. The DPRINT EC command accomplishes this.

4) Correlation, COR2. This component calculates the means, standard
deviations and intercorrelations of variables for the data stored on the DST.

5) Correlation, COR3. For data with missing observations on some sub-
jects the calculation of correlations is more complicated because of the
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necessity of matching observations in order to calculate means, standard
deviations, and cross-products for each pair of variables. The component

COR3 performs this task.

6) Reorder and delete, REDE. This component prints the correlation
matrix with specified rows and columns reordered or deleted.

7) List missing data statistics, RLIST. Although COR3 provides a
printout of all values computed (correlation, matched sample size, matched
means, matched standard deviations, etc.) they are printed matrix at a time.
The component RLIST prints all such values together for each cell in the
matrix.

8) Suppression of variables, SLEP1l. This component suppresses variables

in such a way that they can be reinstated at a later point in an analysis.

The component SLEP2 reinstate the sleeper variables and projects them into
the factor solution. This is desirable in two situations: where there are
functionally dependent variables (linear dependencies) that would interfere
with factoring; and where there are criterion variables that the user wants

to deal with as a predicted variable and hence should not be a part of the
factoring.

9) Reinstatement of sleeper variables, SLEP2. After factoring, SLEP2
is used to reactivate the suppressed variables and to calculate all factor
statistics on all variables.

10) Diagonal values program, DVP. DVP computes or selects a set of
values to be inserted as the diagonal elements of the correlation matrix.
The values usually desired are the estimates of the communalities of the
variables, although other types of values such as reliability coefficients
or 1's can be substituted.

11) Key-cluster analysis, CC5. This general program of independent
dimensional analysis (factoring) permits a selection of a subset of vari-
ables on each dimension, and a variety of other statistics related to
factoring. The analysis starts with predetermined diagonal values in the
correlation matrix, and re~computes diagonal values until convergence or
for a specified number of times. 1In standard form, it selects the most
independent sets of. defining variables that are collinear, cumulates partial
communalities as factoring proceeds, and terminates factoring on the dimen-
sion at which the sum of partial communalities matches the initial sum of
communalities. The program is usually followed by the programs CSA and
SPAN. Options on control cards permit a variety of other forms of multi-
dimensional analysis: centroid factoring, square root factoring, bifactor
analysis, and many forms of object cluster and inverse factor analysis.

12) Non-communality key-cluster analysis, NC2. The component NC2
parallels CC5 in most respects, with the exception that no communalities
are involved in the factoring procedures and factoring is not reiterated.

13) Least squares factoring, FALS. This component performs four types
of factor analysis: principal components, principal axes, canonical factoring,
and augmented factoring. Accurate and efficient methods, based on the work
of Housholder, Wilkenson and Ortega, are used in the matrix calculus of this
component.
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14) Residual and reproduced correlations, FAST. FAST is an independent
component that provides printouts of the matrix of correlations precisely
contained in the factor matrix or the matrix of residual correlations after
the factors are removed from the original correlations. The matrix is sub-
stituted for the original correlation matrix on the IST by FAST for subsequent
analyses.

15) Cluster structure analysis, CSA. This program provides a complete
statistical description of the correlational properties of oblique cluster
domains. The subset of variables that defines each cluster is usually
selected by a key-cluster factoring component, but may also be derived on
other grounds (e.g., theoretical) and input without the benefit of a cluster
factoring. CSA determines the degree of generality of each oblique cluster
dimension, ignoring the other clusters; provides specific data on how to
increase the reliability of each cluster by including additional definers;
and computes the mean intercorrelations of the definers of each cluster with
other variables unifactorially allocated to it.

16) Non-communality cluster structure analysis, NCSA. This component
parallels CSA with the exception that communalities are not defined in the
analysis.

17) Sperhical analysis, SPAN., Graphical representations of a cluster
or factor structure are produced by the component program SPAN. This
component prints out graphs of the augmented structure, three axes at a
time, with only the most salient three-spaces being printed.

18) Rotation of factor matrices, GYRO. This component provides alter-
native methods of rotating the dimensions derived by factoring. Both the
quartimax and the varimax rotational models are available in the component.

19) Sampling and merging, BIGNV. Strictly speaking, BIGNV is not a
component program, but involves several component programs of BC TRY (SAMPLER,
PICK, PRY, MERGER). The component permits a user of the System to perform
a V-analysis on very large numbers of variables by means of a sampling proce-
dure and to obtain a condensed result by merging the analyses of the samples.

20) Factor and cluster scoring, FACS. The component FACS permits
forming linear composites of the observed variables under several different
conditions. The composites may be simple cluster composites, the sums of
standardized scores of variables in a cluster, for each cluster; factor
estimates by a full orthogonal regression model, or by a limited orthogonal
regressicn model; factor estimates by an oblique regression model; user
determined linear transformations with user supplied weights. This program
is capable of scoring subjects with missing data.

21) Scatter diagram, RSCAT. RSCAT is a general program that can be
used to compute all (or a selected subset of) the scatter diagrams within
blocks of variables. Each scatter diagram provides not only the plot, but
also the Pearson product-moment correlation coefficient, the curvilinear
correlation coefficient for both regressions, marginal frequencies, percen-
tile ranks, standard scores, means, standard deviations, and other statistical
properties of the bivariate distributions.

22) Collinearity O-analysis, EUCO. This program sets up the data
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necessary to perform a collinearity cluster analysis of objects. Input to
the program is the matrix of cluster or factor scores for a sample of objects.
Output is a distance matrix that is treated as raw data for a collinearity
analysis; the distances are correlated by the component COR2 and the techni-
ques of V-analysis are applied to the resultant correlation matrix.

23) Proximity O-analysis, OTIYPE. The component OTYPE uses pattern
recognition techniques to select object clusters, iterates cluster conden-
sation and reassignments of objects to convergence on O-types, and performs
a hierarchical condensation analysis of the O-types.

24) O-type statistics, OSTAT. This program provides a re-printing of
the O-type membership lists in a form more convenient for some uses, calcul-
ates the O-type means, standard deviations, and homogeneities for each O-
type on each cluster dimension.

25) Comparative analysis data, COMPl. Comparative analysis of the
results of several cluster or factor analyses can be performed to make higher
order analyses of the factors and clusters. The factor matrices for each
of the individual cluster or factor analyses are combined, inter-factor
collinearities are computed and the matrix of collinearities is factored.
COMP1 causes the factor matrix for a given analysis to be punched on cards
appropriate for COMP2.

26) Comparative analysis collinearities, COMP2. The component program
COMP2 reads the card decks produced in the analyses using COMPl. Several
methods of calculating collinearities are available in COMP2. The matrix
of similarities produced by COMP2 is stored on IST as a correlation matrix,
available for cluster or factor analysis.

27) Comparative similarity rotation, SIMRO by way of SYDA and SYRN.
The combination of SYDA and SYRN work together much like COMP1l and COMP2.
SYDA outputs card decks that are used for a comparative analysis using SYRN.
Each analysis to be included in a similarity or comparative analysis of
factors includes an EC command for SYDA. The decks output by SYDA are com-
bined and read by SYRN, which rotates the factor structures of the various
analyses into a structure of highest possible fit (least squares criterion)
for the entire set of factor structures. SYRN provides a measurement of the
goodness of fit of the rotated factor matrix of each individual analysis with
that of the population matrix determined by SYRN.

28) Typological prediction, 4CAST. The component program 4CAST is
used to discover the degree to which an outside criterion variable, not a
dimension definer in a cluster analysis, can be predicted by the O-type
structures. It consists of a Monte Carlo sampling procedure that simulates
a random assignment of objects to clusters of the same size as those dis-
covered by OTYPE or EUCO analysis. The mean, standard deviations and
homogeneities of the simulations are accumulated into sampling distributions
that are used to make statistical significance judgements about the actually
observed means, homogeneities, and standard deviations of the O-types.

29) Symbolic matrix interpretive system, SMIS. This component performs
general matrix algebraic operations and provides the user with almost unlim~
ited capacity for matrix and vector operations with access to the IST.

Each operation defined under SMIS is initiated by control cards. By combining
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the operations provided in SMIS, the user can perform virtually any calcul-

ation desired even though the calculation is not an integral part of the
other components of the BC TRY System.

Implementation of the BC TRY System

The BC TRY System initially was written for the IBM 7090 under the
Fortran Monitor System (FMS). Subsequently, it has been converted to operate
on the CDC 6400 under the SCOPE operating system. Conversion to other
computer systems is anticipated.
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TRYON-BAILEY ASSOCIATES, INC.
SPECIALIZING IN:
::Systems analysis
:Software development
:::Computer programming
::Statistical analysis
:::Data analysis problems of any magnitude

:Research design in social and behavioral science applications

Our experience extends into a number of fields

Applied Social Research Operations Research
Personality Data Base Analysis
Social Area Analysis Information Storage and
Voter Characteristics Retrieval
Population Analysis Systems Analysis
Attitudes
Demography Custom Programming
Epidemiology
Statistical Analysis of
Personnel Management All Kinds
Urban Modeling and Data
Aptitude Structures Analysis
Job Satisfaction Multi~user Information and
Job Classification Record Sharing Systems
Interactive Programming
Marketing Research Language
Product Appeal Educational Systems
Consumer Characteristics
Population Segmentation Management Information Systems

Modeling Educational Systems

THE BC TRY SYSTEM IS OFFERED EXCLUSIVELY BY TRYON-BAILEY ASSOCIATES, INC.

For prompt, efficient, imaginative, and accurate service in your data
analysis problems, systems analysis, programming development, - - -—

write to: Tryon-Bailey Associates, Inc.
728 10th Street
Boulder, Colorado 80302



