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Domain sampling principles permit formulation of a general method
of multidimensional analysis. Cluster and factor analysis methods are special
cases stemming from decisions made at different stages of the general method,
especially in defining an independent dimension. Key cluster analyses define
a dimension as a selection of s variables drawn from the full n set. Centroid,
principal axes, and maximum likelihood analyses define it by the n variables
(raw or residual, weighted or unweighted); bifactor and second-order analy-
sis, by both types of selection; square root analysis, by one variable. Key
cluster methods can be designed to test hypotheses.

The definition of a variable as the sum of a sample set of scored responses
(e.g., to test items) selected to be. representative of a defined domain 
behavior is a basic principle of psychometrics. This standard practice may
be expressed in a simple algebraic fashion which leads to an integration of
the plethora of formulations of the reliability coefficient [39]. When a test is
included among n variables, domain sampling algebra also provides a definitive
solution of its communality [40]. These principles have been shown to imple-
ment the broad logic of multidimensional analysis by the psychometric
procedures called cluster analysis [42]. The most generally applicable compu-
tational variant of cluster analysis, the CC method, has also recently been
published [41].

Completing this group of papers on domain sampling formulations, this
article has as its purpose, first, to state the general case of multidimensional
analysis, and, second, to develop from it important special cases that are
variant methods of cluster analysis. Some of these special forms have, how-
ever, been otherwise known over the last half century as factor analysis
methods, their main originators being Spearman [29, 30], Th’omson [31],
Burt [2, 3], Kelley [19, 20], Hotelling [14, 15], Thurstone [32, 34], Holzinger
[13], and Lawley [21]. The factor methods of Spearman, Kelley, Thurstone,
and Holzinger are conceived as issuing from the basic factor theorem. The
assumptions are that a test score results from underlying, uncorrelated and
additive true (general and multiple), specific, and error factors. These
restrictive assumptions of factor theory are difficult to justify on substantive
biological and psychological grounds [36]. This paper shows that when the
factor methods are recast as variants of cluster analysis such assumptions
about the components of a test score are unnecessary restrictions.
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The broad plan of this treatment is represented schematically in Table
1. The general case of multidimensional analysis consists of progressive
stages, or regions, in each of which decisions by the analyst are required.
These ~egions are summarily described in the lettered rows a to i, extreme
left column of Table 1. The numbered columns 1 to 9 are the special cases,
each defined by the particular pattern of decisions listed down its column.
The first four cases form the Key Cluster methods, columns 1 to 4. The
remaining groups are other cluster analysis variants known also as factor
analysis methods (or schools): their descriptive names are given below the
column numbers. For example, column 7 defines the Thurstone centroid-
simple structure method. In this group of methods, note that in each region of
decision (or row) there are two entries. The first entry is a decision resting
on the conception of the method as a variant of cluster analysis. The second,
in italics and labelled at the left as "Factor," is the decision made in orthodox
factor formulation. For example, down column 7 Thurstone’s decisions are
represented by the pattern of second, italicized, entries.

The general case of multidimensional analysis is given in the next section
of the paper. Each region of analysis is taken up in order, the principles
involved being illustrated by referring to some of the types of decisions listed
along its row. In later sections the special cases will be taken up successively,
that is, for each column of Table 1 the nature and rationale of its pattern
of final decisions will be given, first, conceiving the method as a variant of
cluster analysis (first cell entries), and, second, as an orthodox factor formu-
lation (second cell entries).

General Case of Multidimensional Analysis

The basic data of the analysis are the intercorrelations between scores
on variables X1, X2, ̄  ¯ ¯ , X,, ¯ ¯ ¯ , X~. The over-all objective is to determine
and measure the smallest number, 1~, of dimensions that reproduce the inter-

correlations, entered as side elements in a correlation matrix. The successive
stages of the analysis, rows a to i of Table 1, achieve this objective. For
convenience, these stages are grouped under five subordinate obiectives,
lettered A to E below.

A. Preliminary Decisions (Table 1, rows a, b)

Reflection of Variables (row a). A main desideratum in deciding 
whether to reflect variables is the method of computing partial communalities
(squared factor loadings), row e. In the special cases of columns 1 to 7, where
the simple summation (Sim 2~) formula (to be developed later) is used,
reflection of variables, denoted by "Yes" in row a, is required.

Preclustering Variables (row b). Preclustering variables before dimensional
analysis permits certain abbreviated or rational variants of multidimensional
analysis (columns 3, 4, 5). In the other variants test clusters are located
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during the dimensional analysis (1, 2, 6) or by rotation of dimensions (7,
8, 9).

B. Determining Initial Communalities (Table 1, row c)

The diagonal entries of the matrix are "self-correlations." Communalities
are selected as diagonal elements because their use yields the smallest number,
k, of necessary and sufficient dimensions, or uncorrelated cluster domain
scores, that will reproduce the intercorrelations. If one used the rehabihty
coefficient, r**, , of each variable as its diagonal element, more dimensions
than k would be required, and if one set each diagonal value at unity, even
more dimensions would be necessary.

As a. correlation coefficient, the communality h~, of a variable v is defined
as the correlation between the observed variable X. and a hypothetical
construct variable X., measuring a different behavior property than X, but
having correlations across the n -- 1 other variables equal to those of X.
([40], formula 1) i.e.,

(1) h~ = too,.
As a variance, the fundamental definition of h2~ is the proportion of total
variance of the observed scores of v that is predictable from the construct
variable-domain score, C., defined as

(2) C.=z,+z,,+... +z,~,
in which the observed z.-scores are defined as one sample variable drawn
from an infinite set of construct variables, all members of which measure
different behavior properties, but whose correlations with the n -- 1 variables.
are proportional to those of v. From this construction it follows that ([40],
formula 5)

(3) h~ = r~c,.
Proportionality of the correlations of v with those of another variable i means
specifically

(4) r,~/r, = a constant (j = 1, ... , n;v ~ i ~ j).

Taking the following as an index of proportionality ([414 formula 6; [43]),

(5)

~2then under condition (4), P o~ ~s unity. The definition of the variable-domain
Co in (2) is not restricted to a domain of variables with equal correlations
but merely to those ~th proportional r’s, as defined in (4).

Communalities are in practice not computed by their defining formulas
(1) und (3) because the requisite construct variables are not available. 
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Table 1, row c, note that in TC analysis (to be described later) a solution 
attempted by a quadratic equation. But in remaining methods approximations
are taken; after reiteration of the factoring procedure, row g, final converged
values are achieved.

C. Determining Dimensionality (Factoring) (Table 1, rows d, e, )f, 

The object is to determine the value of k, the number of uncorrelated
composite variables or independent dimensions, C1 , C2 , "" , Cx , "." , C~
that could reproduce the correlation matrix, including diagonal communah-
ties.

(a) The communahty, hl , of any variable v may be partitioned into
/~ partial communalities (squared factor loadings) or hl. values as follows:

(6) hl = h~. -k .." -k h~. -k ... -k h~, .

(b) The correlation coefficient of v with each other variable i is repro-
duced, i.e., the observed ro~ equals

(7) r;, = hl,hl, -k "" -k hx,h~, -k "’" -k h~.h~, ,

or, said another way, each of its residual correlations after removing the
variance from dimensions 1 to k is

(8) L..~ro, = ro, -- r:, = O.

Definition of an Independent Dimension, C~ (An Orthogonal Factor)
(Table 1, row d). The score Cx is a composite, defined as the following in-
dependent cluster domain score:

(9) C, = (wo)~Co -[- (w~),C~ + ... + (w,,),C,..

The defining variables of the dimension are selected observed variables a, b,

¯ ¯ ¯ , s~, taken from all n variables. The C’s are their variable-domain scores,
defined by (2). The prescript r means that scores on preceding dimensions
C1 , ." , C~_~ are held constant, thus establishing the independence of C~.
The w’s are weights. The same variable may appear in different dimensions,
though, of course, as different residual scores.

This definition is more general than that written originally by Pearson
[25], who initiated multidimensional analysis. It encompasses as special
cases the varieties of cluster and factor analysis given in Table 1. In row d,
note that in key cluster analysis (TC, CC, PCC, RCC), each dimension 
defined by a cluster of s~ variables usually less than n. In centroid, principal
axes, and maximum likelihood factor analysis, the defining variables are
indiscriminately a general cluster of all n variables. These latter methods
differ from each other in the valuesof the weights attached to the different
component variables in (9). In bifactor analysis, dimension C~ is a general
cluster of all n variables, but later dimensions are key clusters. In pivot
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variable ("square root") analysis, each dimension is defined focally by one
variable only.

Recall that each C-variable is a variable-domain defined in (2) as 
composite of z-scores of variables measuring different behaviors but showing
proportional correlations, hence the use of communalities in the diagonals.
Were the z-scores in (2) defined as different test samples of the same behavior
domain, each C-variable would be the construct composite called the "true"
or X~.-score of the variable [39] and reliability coefficients would be diagonal
entries of the matrix. Were each C-variable defined as the single z-score of
the defining variable, then the diagonals would be unities. In multidimensional
analysis, the definition leading to communalities in the diagonal is chosen
for the reason given under objective B.

The simplest weighting of the C-variables is to set all w’s to unity in
(9), as in TC, CC, PCC, RCC, centroid, diagonal, and bifactor analysis.
This simple summation, as Burr calls it [3, 4], intrinsically weights each
defining variable of the dimension C~ by its proportional contribution to the
variance of C~ , that is, by the sum of its communality and its correlations
with the other defining variables. Another choice, characteristic of the
principal axes and maximum likelihood methods, is the computationally
arduous least squares solution of the sets of weights which yield the maximM
sum of their h~ values, that is, of their partial communalities.

Partial Communalities (Squared Factor Loadings) (Table 1, row e).
The portion of the variance of a variable v predictable from a dimension
is the square of its correlation with C~ , called its partial communality, h~, ,
defined in (6). In the unweighted case, from the correlation of sums in the
limit,

(i,j=a, ... ,s~ ;i < j).(10)

The numerator is simply the square of the sum of the residual correlations
of , wit~ the defining variables of C~ o The denominator is simply the sum
over the totM submatrix of residual correlations of these defining variables,
including the diagonal residual communalities. When i = ~, then .h~ is included
in the numerator.

A residual correlation, from (7) and (8), 

(11) ~r~ = ~...(~_~)r~, = r,, -- (h~.h,, ~- ... -b h(~_~),h(~_~),),

and sinfilarly for the ~r, terms. A residual communality is, from (6),

(12)
If one has chosen the defining variables of C~ before the dimension

analysis as in PCC and RCC analysis, it is not necessary to work out the
individual residual terms of (11) and (12). Only sums from the raw matrix
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plus diagonals and sums of partial communalities on prior dimensions are
necessary. Thus, from (11) the numerator of (10) 

(13)

(i = a, ... , s~).

When i = v, h,~ is included in ~r,~ . The denominator of (10),

(14) ~,h~ + 2~rr~i = ~r, - [(~h~,)~ ~- .-. ~- (~h(~_~),)~]

(i, j = a, ... , s.).

Zr, is the sum over the raw matrix of s. variables including diagonals.
This simple general formula (10), called "Sim Z" in Table 1, row e, 

used by all cluster and factor analysis methods, excepting principal axes and
maximum likelihood (to be considered later). Recall that for different methods,
it differs only in the value of s~ , e.g., in centroid analysis, s~ = n.

Terminating Criteria (Salient Dimension Analysis) (Table 1, row ]).
As a simple rational standard for terminating factoring, the writer proposes
the communality exhaustion criterion. To end factoring by this criterion, one
estimates the communalities of all the variables at the beginning of the
analysis. Factoring then proceeds up to the dimension C~ at which the com-
munalities of the n variables are exhausted.

Recall that the communality h~ is basically defined in (3), quite in-
dependent of the dimension analysis, as the variance of variable v predictable
from its variable-domain C,. This magnitude .is estimated before factoring is
undertaken by computing formulas given later in the paper, (31) or (32).
After factoring is under way, the variance of v predictable from dimensions
C~ , C~ , ... , C~ is represented by h~ , this magnitude being the sum of
partial communaIities of v up to and inchiding h~x. , as shown in (6).

Writing the ratio of these two variances, i.e.,

hL
(15) F.. - h~ ’

factoring may be terminated on that dimension C, at which the numerator
of (15) approaches the denominator, i.e., when

h~,
(16) F~. - h,~ - 1.000.

To evaluate F for each variable on each dimension as factoring proceeds
would, however, be a complex procedure. Furthermore, the magnitude of F
for a given variable is subject to substantial error, both in the initial approxi-
mation to the denominator term and in the initial dimensional estimate of
the numerator. Less subject to these errors is the approximate sum (or
average) of the F-values over all n variables, namely,
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Zh~
(17) T~ = Zh~

Using T~ as a criterion, one stops factoring on the dimension C~ for which
T~ by (17) first equals or exceeds unity, i.e., where

Zh~
(18) T~ - ~ ~ 1.000.

In practice, the T-criterion in (18) appears to yield the most salient
dimensions [41]. Consider bias in T: initial estimates of communalities are
usually biased downward, suggesting that a salient terminal dimension
might be rejected by T. This is unlikely because such a dimension would be
the one for which T first exceeds 1.000. The effect of an upward bias would
be to accept nonsalient dimensions. To minimize such an effect, the analyst
may set the criterion a httle under unity, say, at .975.

The T-criterion may reject later dimensions that would be accepted on
sampling grounds. Many analysts may consider such rejection to be an
unimportant loss, for such dimensions contribute minor general variance
and are usually difficult to interpret.

Significant Dimension Analysis. On the basis of sampling criteria, one
may wish, however, to accept all significant (as distinguished from salient)
dimensions. The orthodox F-test procedures applied to the communality
exhaustion indices represented by (15) and (17) would seem appropriate,
but their sampling characteristics are not yet known. There remain the various
significance tests applied by factorists to the distribution of residual correla-
tions (11) or to the distribution of the square roots of the partial communalities
(i.e., of the factor loadings) of a given dimension (10). The tests developed 
Saunders are of special interest because he proposes both types ([6], formulas
44 and 46, p. 300if).

Reiteration o] the Factoring to Converged Communalities (Table 1, row g).
After the first factoring is complete, the sum of partial communalities by (6)
may not yieId the correct value of the communality of each variable, as in
artificial or population matrices [40]. In those methods that start with approxi-
mations, reiteration of the dimensionality analysis on the k dimensions is
required until convergence is secured, as shown in row g, Table 1.

The decision as to which decimal place will define convergence may be
made on arbitrary grounds of salience, say, the third place. On sampling
grounds, however, one may terminate convergence when for every variable
the difference between two successive iterated values of its communality by
(6) becomes less than, say, a third of the standard error of the last iterated
value of its com_munality. Treating ho as a multiple correlation, as in (38),
later, the approximate error is

(19) ah. -" (1 -- h~,)/~/l~- (k A- 1) --" (1 -- h~,)/~-~ -- 2.



ROBERT C. TRYON 121

The magnitude of k, at least 1, is usually trivial relative to N, hence leading
to the final approximation shown.

D. Determining the Structure of the Interrelationships (Table 1, row h)

Having determined the dimensionality of the intercorrelations, one may
relax the condition of independence and select or derive the k dimensions
that may be oblique to each other and be better defined by the observed
variables. Key cluster analysis routinely locates those groups of variables
which delineate the /~ most nearly independent oblique dimensions. Corre-
sponding to the independent dimensions C1 , C2 , -" , C~ there are the
matched set of oblique dimensions, respectively, C~ , Czi , ..- , CK. Thus
for independent dimension Cx given in (9) there is an oblique dimension 
defined in simple summation form by the domain score

(20) C~ = Co + Cb + ... + C,..

Scores on the C-variables that form this composite have the same definition
as in (9), but they are not residual scores as in (9). Geometrically, dimension
C~ is an oblique subcentroid in k-space.

If the analyst ~vishes to check on the clusterings indicated by the
dimensional analysis with an eye, perhaps, to a possible reclustering of the
variables including those that had remained unclustered, he may employ a
geometric model (for an illustration, see [41], Fig. 1). This model takes the 
dimensions as independent axes, and each variable ms a point on them. The
coordinate of each variable on any axis Cx is its correlation, r,c. (unaugmented
factor loading), which by (10) 

(21) r,c, = hx,.

The resulting interior model of variable-points is perceptually not aS
descriptive of the interrelationships among them as the surface model, given
by plotting each variable-domain Co by its augmented correlation, ~his being,
from the correlation of sums in the limit,

(22) rc.c, = h~,/h,.

The surface model, in which all variable-domains are points at distance 1.00
from the origin, has the perceptual merit of revealing directly as a surface
s~paration of points the relationship between each variable-domain C, and
any one of the other variable-domains C~ . This important "common factor
correlation" can, however, be computed directly from the matrix and the
eommunalities, i.e., from the correlation of sums in the limit,

(23) re.c, = ro,/h,h~ .

Simple Cluster Structure (Rotated Primary Factors). The finally selected
cluster domains of type (20) are the most nearly independent k dimensions
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evident in the data. The degree of their interdependence is given by their
intercorrelations. For any two such generally oblique cluster domains, C~ ,
C~;, their correlation is given, from the correlation of sums in the limit, as

Zr~.
(24) rc~’c’t = ~ %/~r~’

where Zr, is the sum of r’s in the submatrix of the s~ variables of C~, including
diagonal communalities, Zr~.~. is the same for the submatrix of s~- variables
defining C~;, and ~r, is the sum of the s~s~ coefficients in their cross correla-
tion submatrix. Recall that, as stated under (9), a given variable may appear
in more than one oblique dimension, a situation which would, of course,
increase obliqueness.

As an aid in interpreting an oblique dimension C~, , one may compute
the correlation of each known observed sample variable v with the dimension
(rotated factor loading). By the correlation of sums in the limit it 

Zr~
(25)

But of more interest theoretically is the correlation of C~, with each kind of
general variation of which v is taken as a test sample, namely, its variable-
domain C. in (2). This correlation (augmented rotated factor loading) 
simply, from the correlation of sums in the limit,

(26) rc.c,, = r~c~,/h, .

Difficult problems arise in simple cluster structure analysis in those
methods in which the defining variables of the independent C~ dimensions
are total clusters of all n variables. As shown in Table 1, row h, columns 7,
8, 9, these dimensions must be rotated [see 9] to meaningful defining orthogo-
hal or oblique clusters. Orthodox factor analysts following Thurstone [34]
propose graphical rotation--a cumbersome, subjective procedure, admittedly
an art [6]. Recent attempts have been made to achieve rotation by objective
analytic methods [5, 18, 24, 26, 28]. Rotation, an unnecessary burden, is not
required when the dimensions are defined by key clusters.

E. Scores on Oblique Dimensions (Table 1, row i)

Ideally, the best estimate of an individual’s sample score C~. on any
dimension C~ is the regression of C~ on the n variables, i.e.,

(27) ~. = 2~f~c,,z, (i = 1,... , n).

Such an estimate is so arduous to compute that in most factor analyses the
important job of m~asuring persons on the reduced dimensions is rarely
tackled, ~nd a main benefit of the analysis is lost.
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When, however, a dimension is defined by a key cluster, a good estimate
may be secured from the cluster score, namely, the simple sum of the z scores
of the defining variables of C~, i.e.,

(28) C~, = zo + .-. + z,.
In this composite each defining variable takes an intrinsic weight proportional
to the sum (or mean) of its correlations with the remaining defining variables.
In Table 1, row/,.the simple summation, labelled "~" may be used in all bu~
the general cluster methods (columns 7, 8, 9).

The cluster domain validity of the observed cluster score (28) is its corre-
lation with the full domain score, C~ in (20). By the sums formula in the
limit it is

__ ~h_;_-b_ Zr, (i, j = a, ...(29) rc,.c, ~s q- ~r~ ’

Note that the numerator in (29) is simply the sum over the submatrix of 
including diagonal communalities, and the denominator is the same except
with unities in the diagonals.

The relationships between cluster scores that fallibly measure the final
k oblique dimensions are given by their intercorrelations. Between any two
such scores, C~,~ , C~, , by the sums formula this correlation is

(30) rc~,.cy~. = same as (24) but with the unities in the diagonals.

Special Cases o] Multidimensional Analysis

Key Cluster Analysis: Total Communality (TC) and Cummulative Communality
(CC) (Table 1, columns 1, 2)

The TC and CC methods directly apply the general formulations out-
lined above. As shown in Table 1, columns 1 and 2, the correlation matrix is
initially made positive (row a) by conventional reflection methods (see [10],
Table 16.13) in order to guarantee that variables chosen to define a given
dimension will show correlations of positive proportionality in (4).

An electronic computer is required in TC analysis to solve for the
communalities by a simultaneous quadratic formula (row c). Difficulty has,
however, been experienced in achieving a solution in empirical matrices
[16, 17]. The CC method has therefore been developed [41] to meet the
possible failure of solutions by the quadratic formula. CC analysis starts with
approximations to commnnalities, and dimensionality analysis is reiterated
until convergence is secured. CC analysis is thus a procedure alternative to
TC, being a method that provides a solution in all matrices, and one that may
be programmed either for electronic or desk calculator computation.

Solution of the communalities in TC analysis is based on the fact that
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the communality of any variable v is the squared multiple correlation between
v and the remaining n - 1 variable-domains ([40], formula 11),

(31) h.~ = R,~.o,o .... c,...c. (i # v).

Solving for the communalities of all ~ariables requires a simultaneous solution
by reiteration of the n qu~lratics of type (31).

Various initial approximations to communalities required in the CC
method are available [40, 45, 46]. On domain sampling grou, nds, the preferred
estimate of h.~ is "Approximation B" ([40], formulas 29, 30), the Spearman
formula, computed from a cluster of reference variables whose correlations
are most nearly proportional to those of v. Here,

(32) hl = ~ro,r.i/Xr, (i, j # v; i < ~),

where both i and j are the three variables showing the highest p.2~ and P,~i
values, respectively, by (5).

In both methods the defining variables of each dimension C~ anchor on
a selected pivot variable, vl , that appears to show relatively high and low
correlations with other variables. Such a variable would usually center the
cluster obliquely to clusters defining other dimensions. To locate the pivot
variable a measure of "pivotness" of each of the n variables is first computed,
namely, the variance of its squared r’s. The pivot variable vl then is that
variable whose

(33) vat (rr~./) is the maximum (i = 1, ... ,n;i # 

-A quicker and probably less sensitive means of selecting the pivot variable
is to choose the one with the highest residual communality as given in (12).
For desk calculator work, selecting vl from a correlation distribution table
is satisfactory, though it entMls some subjective elements ([41], Table 2).

Around the pivot variable one collects the remaining defining variables
of C~ . These are the variables with highest indices of proportionality with
v~ . Three such variables at a minimum are selected. If these variables are
called, in order of magnitude of P~.~ , i~ , i2 , is then any additional variable
i may also be included in the cluster if its P~I~ value is equal to or above .81
and also is within twice P.~,~, - p2o,, , that is, if its

(34) P~,,, ~ (2P~,,. -- 21,,.) .81.

Partial communalities, row e, are computed by the general formula
(10). In TC analysis the factoring process is terminated by the T-criterion
at the end of one factoring procedure only. But in CC analysis, since approxi-
mations initiate the analysis, the first factoring process is terminated by the
T-criterion, then new values of the communalities are computed from (6),
and the factoring process is reiterated until the communalities cbnverge
(rows ], g). In both TC and CC analysis, the dimensional analysis locates the



ROBERT C. TRYON 125

?~ oblique dimensions, row h, and scores of individuals on the dimensions,
row i, follow the formulations as given earlier under the general method.

Key Cluster Analysis: PrecIustered Cummulative Communality (PCC) and
Rational Cummulative Communality (RCC) (Table 1, columns 3, 4)

Recall that in TC and CC analyses the cluster of variables selected to
define a dimension C~ is chosen during the dimension analysis. One may,
however, choose them prior to factoring, empirically in PCC, rationally in
RCC analysis. Preselection of clusters makes multidimensional analysis a
quick desk calculator operation because the complete residual correlation
matrices essential to CC analysis are not required. PCC and RCC analyses
are procedurally identical after the analyst has clustered the variables (see
Table 1, columns 3 and 4).

In PCC analysis (for a recent illustration see [38]), one empirically
groups the n variables into k’ clusters, C~, ̄  ¯ ¯ , C,, ¯ ¯ ¯ , C~0. Each cluster
is made to be as "tight" as possible, i.e., is composed of variables whose
correlations are maximally proportional by (5). Some variables may remain
unclustered, but their number is kept as small as possible. As an aid in select-
ing the groupings one may use a correlation distribution table.

But in RCC analysis the rational groupings stem from the analyst’s
theory from which he generated the n variables under study. An investigator
commonly conceives the n variables to sample different behavior domains or
properties of the individuals, such as the facets of Guttman [11]. The s
variables that fall in each such theoretical subgroup are a rational cluster.
The n variables will usually be organized in/~’ such clusters, thoug~a a few
may remain as isolates.

As inCC analysis, one starts both PCC and RCC analyses by computing
approximations to the communalities, preferably by formula (32). Thereafter
the work is procedurally identical to the CC analysis excepting that only
mean residuals are necessary. The mean residual correlation of a variable v
with any cluster C~ is, from (13),

(35) Z,, = (1/s~)Zrr,, (i = a, ... , s~).

The mean residual communahty of the variables that compose C~ is, from
(12),

(36) ,h~ = (1/s~)Zrh~ 

The quickest means of choosing the pivotaZ defining cluster of any dimen-
sion C~ is to select the one with largest mean residual communalities as given
in (36). The partial communalities are then computed by the simple sum-
mation formula (10). As shown in Table 1, the remainder of PCC and RCC
analyses is the same as in CC. The final ~ dimensions are thus defined by a
selection from the k’ original clusters.
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A complication may arise if one should run out of clusters before di-
mensionality has been completely determined. If one wishes precision on
dimensionality he would compute the n X n residual correlation matrix and
would perform the CC procedures on it and on any later residual matrices
that are necessary. PCC and RCC analyses can be made as precise as CC
analysis. To do so the analyst forms new estimates of the communalities by
(6) and then, as in CC analysis, reiterates the factoring procedures until
communalities converge.

Abridged PCC and RCC (Multiple Group Factor Analysis or "Poor
Man’s Cluster Analysis"). The analyst need only spend a few hours of work
on a correlation matrix if he is satisfied with an approximate multidimensional
analysis. After reflecting the variables, preclustering them, and approximating
their communalities as in PCC analysis proper he can compute the correla-
tions between the resulting/d cluster domains by (24). He may, if he wishes,
even skip the step of approximating communalities, leave the diagonal vacant,
and use mean r’s instead of ~r’s in (24).

The result is a k’ × k’ matrix with diagonal elements of unity. The
Correlation between each variable v and a given domain C~ is then estimated
by (25); if communalities are not used, he would use mean r’s instead of 
values in (25). These calculations result in an n X /d matrix. From a study
of these data he may make a reasonable estimate of the dimensionality,
interpret the oblique dimensions, and compute cluster scores. If he wishes a
more accurate estimate of the dimensionality and of the most oblique /~
clusters, he can factor the kr )4 ]c’ matrix by the diagonal method of factoring
(see "Pivot variable analysis" below). By this means he quickly locates the
k most nearly independent cluster dimensions.

Orthodox PCC Analysis (Group, Grouping, and Multiple Group Methods
o] Factoring). In 1939, the writer published dimensional analysis by the
PCC method in approximately the form presented here ([37], Sec. 7); the
quick abridged form was also given (Sec. 5, and Analyses 14, 15a for centroids).
"Five years later Itolzinger [12] and then Thurstone [33, 35] presented the
abridged form. Thurstone labels it the multiple group method of factoring.
At the end of abridged analysis he rotates the/c oblique dimensions to orthogo-
hal positions in order to compute residual correlations, and to see if further
dimensions might be necessary. In his book, Thurstone [34] added the group
and the grouping methods (see also [6], ch. 11). They differ from the 1939
and current PCC methods in the procedure of grouping variables in clusters
on grounds of absolute magnitudes of correlations rather than of proportion-
ality of correlations, our p2 criterion.

Pivot Variable (P V) Cluster Analysis (Diagonal or Square Root Factor Analysis)
(Table 1, column 5)

In PV analysis (see Table 1, column 5), each variable i among the 
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variables may be selected as the central sample variable of an oblique cluster,
C~, . Defined generally in (20), C~, here consists of three variables only.
The other two variables are those which, after the matrix is reflexed, yield
the highest p2 values with i. On domain sampling principles one may thus
conceptualize k’ = n preclustered domains, C~, , ... , C~, , ... , C~ . After
determining approximations to the communality of each variable from its
reference variables by (32), one computes the correlations between the 
domains by (24). Then a dimensional analysis of the n X n matrix 
coefficients, with diagonal elements of unity, is performed. The cluster with
highest column sum defines the first dimension; locating the pivot cluster of
later dimensions requires only computing residual communalities and select-
ing the one with highest value. With an electronic computer, however, one
can instead compute residual matrices and more sensitively select the pivot
variable by (33). If the defining pivot cluster of any dimension C, is denoted
C~, , then the augmented partial communality of an oblique cluster is a
special case of (10), i.e.,

2 h2(37) h~, = rr~,c,~/(1-,

The numerator of (37) calls only for the residual interdomain correlations
of the selected pivot cluster with each of the remaining n -- 1 clusters; only
a simple n X 1 matrix of such residual correlations is necessary. Factoring is
terminated when the sum of the augmented partial communalities of all
variables over all dimensions, that is, the numerator of the T-criterion, first
becomes equal to or greater than the denominator term, n.

Having now located /~ pivot clusters by the dimensional analysis, the
analyst assigns each of the remaining n -- k variables to a finM set of k
oblique clusters. Each may be assigned to that pivot cluster which defines the "
dimension on which the variable in question has its highest partial
communality. Tighter clusters may, however, be grouped by criterion (34).
An illustration of PV diagonal factoring procedures applied to an inter-
domain matrix is given elsewhere ([38], Appendix D). The potentialities.of
PV analysis should be explored. It is a rapid means of estimating k, the
dimensionality (rank) of the matrix, and hence it could precede maximum
likelihood analysis where foreknowledge of the approximate value of k is
desirable.

PV analysis would give precise results if one started with correct values
of the communalities. But it may be employed to find such values, as follows.
After the first factoring to determine the/~ most nearly independent pivotal
clusters, these clusters may be used as a constant reference set of predictors
to compute the communality of each variable, v. Elsewhere it has been shown
([40], formula 44) that h~ is the squared multiple correlation between v and
a set of k oblique cluster domains, i.e.,

(38) h,~ = R,~.c~c~,...v~ ̄
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From knowledge of the/c oblique clusters by initial PV analysis, and with
initial trial values of the constants required in (38) computed from (32),
(24), and (25), simultaneous solutions of all n communalities, reiterated 
convergence, can be programmed electronically. Such a program may be
integrated with a periodic replication of PV analysis in order to discover
whether the increased precision of the communalities produces changes in
dimensionality.

Orthodox PV Analysis. One of the oldest factoring methods, diagonal
factoring, used in PV analysis has recently been relabelled square root factor
analysis [44]. In orthodox practice the analyst pivots a dimension on a single
variable by arbitrarily inserting unities in the diagonal and factoring the
unreflected r matrix. This practice prevents one from determining the di-
mensionality of the matrix, rests the partial communalities rather unstably
on the coefficients of the pivot variable alone, and leaves unclear the oblique
cluster structure of the variables. The method may, however, be useful in
studies with large n as a preliminary analysis to locate the most promising
predictors of a criterion.

General and Key Cluster Analysis (Bifactor and Second-order Factor Analysis)
(Table. 1, column 6)

Historically, the urge to discover one general dimension in cognitive
behaviors provided the impetus to the ultimate development of multi-
dimensional analysis. It produced the two-factor theory of Spearman [29, 30],
and its subsequent generalization by Holzinger and ttarman [13] to bifactor
analysis.

Applying domain sampling principles to this case, one defines the first
¯ dimension as a general domain score on a full battery of all n variables;

thereafter each dimension is a residual score on an empirically discerned key
cluster. In Table 1, column 6, notice that in bifactor analysis the decisions
follow the same pattern as in CC analysis, except for the one particular of the
definition of the dimensions, row d. Here, the deviation is only with respect
to the first dimension C1 which is defined in general formula (9) as the sum 
scores on all n variable domains, i.e., sl = n. In the first residual correla-
tion matrix and thereafter the regular CC procedure is carried through,
each subsequent dimension being defined by s~ variables.

Orthodox Bi]actor Analysis. As illustrated by Holzinger and Harman
[13], the orthodox procedure is applied to predominately positive matrices
that may not require reflection. The variables are preclustered into kr clusters,
each consisting of variables which (in our terms) show high p2 values with
each other. One of these clusters is a general cluster, consisting of one variable
drawn from each of the remaining kr -- 1 clusters. The first dimension, C1 ,
is defined by this general cluster and is called a general factor, g, the first
partial communalities of all n variables on it being called their squared
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g-saturations. In the first residual matrix and thereafter, the dimensions are
successively defined in turn as each of the residual/d -- 1 clusters (group
factors). The partial communalities are computed by approximation (32)
but for the defining variables of each key cluster only. Zero partial communali-
ties are by fiat assigned to variables in other clusters. This procedure is
unwieldy computationally. Results from it will correspond closely to those
more efficiently achieved by the CC method, modified as in Table 1, column
6, by defining the first dimension as a general cluster domain, the remaining
dimensions as key clusters; preclustering is unnecessary.

Orthodox Second-order Factor Analysis. In Thurstone centroid analysis,
when a generally positive matrix of correlations between primary factors
results from rotation, the correlations between these first-order factors may
then be subiected to a new centroid analysis on one dimension only. This
dimension is termed a second-order factor. On domain sampling principles
the /c correlated primaries represent hypothetical oblique clusters ~vhich,
unlike the oblique clusters discovered in key cluster analysis, are normally
poorly defined by actual variables. The second-order factor is simply a com-
posite general cluster domain--a battery score on the/c oblique clusters. This
general composite is difficult to interpret because of its vague omnibus
character and because of the complex redundancy of some variables that are
common to two or .more primaries.

A cleaner general composite, if desired, would be secured by a CC
analysis designed as described above, namely, by defining the first dimension
C1 as a composite domain of all n variables without redundancy, later di-
mensions as key clusters. To illustrate that such a first dimension corresponds
closely to the Thurstone second-order dimension (sometimes called g), the
writer compared the correlations between the 1l WAIS variables and the
Thurstone second-order factor ([7], Table 5, 18-19 yr. olds) with their
correlations with the C1 dimension defined as an nonredundant general
cluster domain. The P2-value of the paired columns of correlations was unity
in the second decimal place.

Second-order analysis can be extended, of course, to more than a single
dimension and to matrices with positive and negative correlation, s between
the first-order factors. This problem is mor~ fruitfully approached, however,
under higher-order composites of oblique clusters discussed in the last section
of this paper (see "Designed reanalyses").

General Cluster Analysis ( Centroid-Simple Structure, Principal Axes, Maximum
Likelihood Factor Analysis) (Table 1, columns 7, 8, 9)

In the remaining group of methods each dimension C~ is defined suc-
cessively as general battery residual scores on all n variable domains, un-
weighted or weighted.

Unwelghted General Clusgers (Cen~roid-Simple S~ruc~ure Facior Analysis)
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(Table 1, column 7). If the analyst wishes to define each dimension C~ as the
total unweighted residual domain score on the n variables, he sets sx = n in
(9) and all wrights equal. The procedures of CC analysis are now called for
down to structure analysis, as shown in Table 1, column 7. As pointed out
earlier, the indiscriminate use of all n variables requires graphical or analytic
rotational methods to describe the simple cluster structure. Following
Thurstone, the simple-structure factorist who uses graphical methods usually
does not place the oblique rotated dimensions through oblique clusters of
variables but r~ther the rotated dimensions bound the variables. As a result,
the calculation of individual’s scores on these oblique dimensions or factors
requires the use of the complex regression equation given in (27).

This complexity usually leads the simple-structure factorist, after
having laboriously located the "underlying" primaries through rotational
devices, to abandon efforts to estimate the scores of individuals on them.
Thurstone recommends ([34], p. 515) that the complex regression score 
replaced by computing a simple cluster score on the nearest oblique cluster--
precisely the type of cluster domain that is directly located and measured
by key cluster analysis.

Orthodox unweighted general cluster analysis has been fully developed
by Thurstone [32, 34] and his followers under the name "multiple factor
analysis." In Table 1, column 7, if one compares the orthodox procedure
(2nd cell entries) originally formui~ted on the basic f~ctor theorem with the
procedures based on domain sampling (lst cell entries), they are seen to 
identical except for certain unrefined features of the orthodox method: the
use of highest r’s ~s initial estimates of communalities, the terminating of
factoring by a statistical test of residual r’s, and the lack of reiteration of
factoring to converged communalities.

Weighted General Clusters (Principal Axes or Components) (Table 1,
cohimn 8). One may ~.~Jsh to attach differential weights to scores on the 
variable domains in (9) in order to m~ximize the sum of p~rtial commun~llties
on each successive dimension. The definition of the dimensions in this case is
otherwise identical to that in the preceding unweighted case. Procedurally .
(see Table 1, column 8), no initial reflection of variables is required, but 
electronic computer is essential to solve reiteratively by least squares for the
values of the partial communalities, row e.

In the orthodox method of weighted general clusters as described by
Pearson [25], ttotelling [14, 15], and Kelley [20], considerable confusion h~s
been introduced by their use of unities (~nd sometimes reliabilities) in the
diagonals. A rationale for unity diagonals would be equally applicable to
any of the other methods described ~bove ~nd equally inappropriate, for.
commun~lities are called for, as stated earlier in this paper (see ~lso [13],
ch. 7). The only basic feature th/~t distinguishes the weighting of general
clusters from the preceding centroid analysis is the decision to apply weights
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in the definition of each dimension. A main feature that distinguishes both
approaches from the key cluster method is the decision to set s, equal to n.
As a consequence both general cluster methods require rotational procedures
in order to describe cluster structure.

Maximum Likelihood General Clusters (Table 1, column 9). As with the
preceding two methods, Lawley’s maximum likelihood procedures [21, 22,
23, 27] determine lc general cluster dimensions, s~ = n in (9). But Lawley’s
dimensions are significant in the sense that the final partial and total com-
munalities reiteratively determined from trial values are model population
values that would produce a correlation matrix from which there is maximum
likelihood that the observed statistical matrix represents sampling fluctua-
tions. A chi square test of residual correlations is taken as evidence that the
model cannot be rejected. The procedures are onerous even for an electronic
calculator, since models with /c progressively increased must be tested one
at a time. Efficiency is greatly improved if good trial values of/c and of the
partial communalities can be found to initiate the reiterative procedures.
This maximum likelihood approach has special appeal because of its capabili-
ties of significance testing, but its gargantuan computation requirements and
the need of rotation to a final cluster structure are serious limitations.

To sum up the three general cluster approaches and offer a prospectus,
all three general methods define dimensions as indiscriminate composite
domain scores on all n variables. This definition is a common limitation
because it leads to the uncertain procedures of rotation to simple structure.
Paradoxically, the Thurstonian unweighted case, the most generally used
method of factor analysis [6, 8, 10, 34], is least justifiable. A few books,
notably British ones, do put the method in the right perspective [1, 3, 31].
Centroid factoring is not as exact as the principal axes method in determining
dimensionality. It lacks a test of significance, unlike the maximum likelihood
method. For a general cluster solution the analyst would now use a modern
computer programmed for the principal axes or maximum likelihood methods.
As for the computational simplicity of the centroid method, the key cluster
methods are simpler and have the additional merit of routinely describing
oblique structure without the need of rotational devices.

Designing principal axes and maximum likelihood solutions so as to
describe oblique cluster structure would remove their present inadequacies.
Coupling key cluster analysis to them would, it would seem, turn the trick.
A preliminary pivot variable (PV) analysis would quickly demarcate the
desired set of/c oblique clusters. If a method of least squares fit of/c axes
through these oblique subcentroids can be devised, the result would be a
weighted key cluster or principal cluster solution. To increase the efficiency
of a maximum likelihood method a preliminary PV analysis should, it would
seem, provide good initial trial values, not only of dimensionality but also
of partial communalities (appropriately unaugmented). If this method can
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be further modified to pass hypothetical population dimensions through
the k key clusters, rotation would not be required, but it would retain the sig-
nificance testing features of Lawley. The result would be a maximum likeli-
hood key cluster solution.

Rationally Designed Dimensional Analysis

The order in which clusters are selected to define successive dimensions
is determined in the key cluster methods of Table 1, columns 1 to 4, com-
pletely ob]ectively; the object is to maximize the independence of the variables
that define different dimensions and to select them in decreasing order of
salience. But key cluster analysis need not be so blindly empirical; it may be
designed to test hypotheses based on theories about the structure and order
of variance determination among the n variables.

Designed TC and CC Analysis. An analyst may generate the hypothesis,
for example, that clusters among n~ variables of type A (say, a group of
sociological variables) may better predict the communality variances of all
clusters among n~ variables of type B (say, a group of social attitude variables),
than would be the case in the converse dh’ection, B to A. To test the hypoth-
esis, he would perform a TC or CC analysis of the nl q- n~ matrix of corre-
lations, but restrict the defining variables of the factored dimensions solely
to the A block of variables. After the terminating criterion T has been met
by the A-variables, the residual communalities of the B-variables would be
their communality variances unpredictable by the A set. A fresh TC or CC
analysis in reverse order, B to A, would reveal residual communality variances
of the A-variables unpredictable by the B set. Under the hypothesis, per-
centage determination of the variances in the A to B design should be hig.her
than in B to A.

Designed PCC and RCC Analysis. Having empirically or rationally
preclustered n variables, for example, of the sociological and attitude types,
an analyst may on the basis of theory generate the hypothesis that only
certain ones of the k~ clusters are salient predictors of the remaining clusters,
and in a hypothetical order of salience. His test would consist of a dimensional
analysis in which the successively factored dimensions would be defined by
the different selected clusters arranged in the order of their hypothetical
decreasing salience. After the T-criterion is met, then under the hypothesis
the analyst would discover that, for the variables not in the selected clusters,
their residual communalities should in general have progressively decreased
as factoring proceeded and should have become negligible on dimensions
following those hypothesized as being salient.

Designed Reanalyses. Any of the above designs may follow upon a pre-
liminary purely empirical key cluster analysis. Such a preliminary study,
including the oblique structure analysis, may lead to new ideas that the
analyst may wish to test by additional types of dimensional analyses.
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For example, will a small number of higher-order, or composite, clusters
maximally predict the communality variances of the n variables? To illus-
trate, a study of the oblique structure of sociological and social attitude
clusters may suggest that one composite of sociological clusters and one
composite of attitude clusters may leave but a minor amount of the com-
munalities of the variables unpredictable. The test in this case would be
a new dimensional analysis in which the first two dimensions would be defined
respectively by the two composite clusters. The residual communalities of
the variables would constitute the parts unpredictable from these two
dimensions. Thurstone’s single second-order factor analysis is a special
design, discussed earlier, in which one such general composite cluster may
be so tested.

Another type of reanalysis consists of bringing together in one common
new dimensional analysis clusters found to be the most nearly independent
sets in different prior analyses. To illustrate, using urban neighborhoods as
objects, the writer performed three separate CC analyses: on sociological
variables in 1940, on the same characteristics in 1950, and on voting variables
in 1954. Each of the separate analyses yielded three salient oblique dimensions.
The nine oblique clusters were then projected into a single common di-
mensional analysis. This master analysis still yielded three salient oblique
dimensions, demonstrating thereby the common tridimensionality of these
characteristics over more than a decade. In such reanalyses the analyst may
also wish to include brand new variables that he considers theoretically to
belong to the common structure.

Summary

The general method of multidimensional analysis, designed on domain
sampling principles, covers as special cases all the main types of cluster and
factor analysis. The different methods vary primarily in special decisions
about the nature of an independent dimension. Such a dimension is defined
in general as a composite score on a cluster of variable-domains. In cluster
analysis terms the special methods of key cluster analysis, denoted as TC,
CC, PCC, and RCC, define each dimension as a selected set or subgroup
from all the n variables. CC analysis is the most generally applicable. Square
root or diagonM factor analysis, called PV anMysis, pivots each dimension
on one central variable. Bifactor and second-order factor analysis defines the
first dimension as a general cluster of all n variables, the later dimensions as
key clusters. Among the general cluster methods that define each dimension
as a composite of all n variables, centroid factor analysis defines it as an
unweighted total cluster domain, principal axes as a weighted one, and
maximum ~,likelihood factor analysis also a weighted one but having the
additional feature of supplying a technique for estimating the number of
statistically significant dimensions required. The key cluster methods de-
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termine simple cluster structure as a routine aspect of the factoring process,
whereas the general cluster methods require laborious rotations to determine
structure. The key cluster methods can be applied blind, but they can also
be designed to test hypotheses.
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